S10 Geo-Consulting

Geotechnical & Geo-environmental Ground Investigation

Report prepared for

Leach Pottery Higher Stennack St Ives Cornwall TR26 2HE

For Bernard Leach (St Ives) Trust Ltd

> Report reference 22-137

> Report date 26th October 2022

Prepared by S10 Geo-Consulting Limited Consulting Engineering Geologist & Geo-Environmental Engineer

Report Quality Management

Project Name	Leach Pottery, Higher Stennack, St Ives, Cornwall, TR26 2HE						
Project Title	Ground Investigation Report						
Project reference	22-137						
Client	Bernard Leach (St Ives) Trust Ltd						
Version	Issue 1						
Prepared & checked by	Simon A Wilkinson BSc(Geol) FGS Geologist & Director 26 th October 2022						

COPYRIGHT AND NON-DISCLOSURE NOTICE

S10 Geo-Consulting Limited owns the copyright in this report save to the extent that any copyright is used by S10 Geo-Consulting Limited under licence from a third party. This report may not be copied or used without S10 Geo-Consulting Limited's prior written agreement for any purpose other than the purpose indicated in this report.

This report, together with any findings and/or advice that it contains, are provided to the Client named on the front of this report. They are provided to the Client for the Client's benefit only. The report must not be shared with any third party without obtaining the Consultant's prior written agreement.

Any third party who obtains access to this report by any means is hereby put on notice that the disclaimer set out below shall apply.

THIRD PARTY DISCLAIMER

Any disclosure of this report to a third party is subject to this disclaimer. This report was prepared by S10 Geo-Consulting Limited at the instruction of, and for use by, our Client named on the front of this report. Nothing in this report in any way constitutes advice to any other party who has access to it by whatever means and this report may not be relied upon any party other than our named Client. S10 Geo-Consulting Limited excludes to the fullest extent permitted by law any and all liability whatsoever (whether for loss, damage, costs, expenses or otherwise) suffered by any other party, howsoever arising out of, or in any way connected with, anything set out in this report. For the avoidance of doubt, S10 Geo-Consulting Limited does not seek to exclude any liability it may have for personal injury or death resulting from our negligence, for fraud or any other matter for which liability cannot be lawfully excluded.

© S10 Geo-Consulting Limited 2022

S10 Geo-Consulting Limited Parkfields New Road Bream GL15 6HJ

Tel: 07376 955936 E-mail: info@s10geo.co.uk

CONTENTS

Executive	e Summary	1
1.0	PROJECT / SITE INFORMATION INCLUDING DESK STUDY RESEARCH	3
2.0	PRELIMINARY CONTAMINATION RISK ASSESSMENT	13
3.0	GROUND INVESTIGATION	16
4.0	GEOTECHNICAL MODEL & FOUNDATION RECOMMENDATIONS	21
5.0	SOAKAWAY TESTING	25
6.0	CONTAMINATION RISK ASSESSMENT & REFINED CSM	27

APPENDICES

7.0

1	SITE PHOTOGRAPHS
-	5112111010010101110

- 2 EXPLORATORY HOLE LOGS (INCLUDING PHOTOGRAPHS)
- 3 INFILTRATION TEST RESULT SHEETS
- 4 CONTAMINATION STATUTORY FRAMEWORK/METHODOLOGY AND CERTIFIED CONTAMINATION TEST RESULTS
- 5 WASTE ACCEPTANCE CRITERIA (WAC) RESULTS
- 6 GAS MONITORING RESULTS
- 7 WHEAL JANE CONSULTANCY DESKTOP MINING SEARCH (ref: MS41470, dated 3rd February 2022)

EXECUTIVE SUMMARY

PHASE 1: DESK STUDY AND WALK-OVER					
Current Land Use	Commercial – Leach Pottery premises				
Site History / Historic Land Use	Commercial & residential land use; historic mining legacy in the wider area may bear some influence upon the site in terms of made ground				
Proposed Land Use / Development	Commercial: new production space, learning studio & café incl. refurbishment / redevelopment of existing buildings incl. surrounding infrastructure				
Unexploded Ordnance	Low risk – no action required				
Geology	MRSL – Mylor Slate Formation; overly	ying superfi	icial alluvial soils associated with the adjacent Stennack River		
Hydrogeology / Hydrology	Secondary A Aquifers; adjacent Stenn	ack River (southeast boundary); no known nearby surface/groundwater abstractors; Site not in SPZ		
Preliminary Contamination Risk Assessment	Potential risks arising from: e general near-surface made potentially thick mantle of contamination and landfill e bedrock geology represen	e ground f made grou I-type gase ting potent	und (both on-site & off-site) associated with historic mining legacy of the area, representing possible source of s tial source of radon gas		
PHASE 2: GROUND INVESTIGAT	TION				
Scope of Intrusive Investigation	The ground investigation comprised: 4 window sample boreholes to a maximum depth of 5.45m bgl 2 dynamic probe holes to establish the deeper ground profile – up to 10m depth 6 manually-excavated trial pits to establish the foundation profiles of existing buildings 				
	weathered mantle of the MRSL (as per Despite the presence of made ground	er Geologica d, no visual	al Mapping), comprising silty clay or olfactory evidence of significant contamination was noted during the site works		
Ground Conditions Encountered	Groundwater:		Despite a wet horizon in WS1/2.62m, all other exploratory holes were recorded as dry upon completion Post-investigation monitoring in WS1 and WS2 also recorded dry conditions		
	Roots / Desiccation:		Roots: 0.26m – 1.1m across the site Desiccation: none identified		
GEO-ENVIRONMENTAL ASSESSN	IENT				
	Human Health: • N		risk identified from laboratory testing		
	Controlled Waters:	 Lea of p (sec han out unn of u 	chate analysis has recorded mild elevations of arsenic, nickel, copper and zinc in made ground at WS4/1.0m (area oroposed soakaway construction). Whilst there could theoretically be a perceived risk to controlled waters condary A aquifer and adjacent Stennack River), given the existing/proposed predominance of impermeable dstand and that the offending made ground beneath the site will differ little to that beneath the wider region side the site, pre-construction remedial measures in respect of controlled waters are therefore considered eccessary. However, the siting of soakaways in made ground material should be avoided in order to mitigate risk unacceptable leachate generation and impaction of groundwater / nearby surface waters.		
Conclusions of Contamination Risk Assessment	Plant Growth:	No risk identified			
	Radon:	Public Health England UK Radon mapping indicates probability of 10-30% that the Site is above the Act therefore full radon protection measures will be required. It is recommended that local Building Contra to confirm this and to establish specific scope of protection measures required			
	Landfill /Ground Gas:	 No pre 	risk identified based upon single round of gas monitoring (during a period of favourable falling atmospheric ssure)		
	Water Supply Pipes:	• No	risk identified		
Proposed Remedial/Mitigation Measures	Radon protection measures – specific scope to be determined by local Building Control department The siting of soakaways in made ground material should be avoided in order to mitigate risk of unacceptable leachate generation and impaction of groundwater / nearby surface waters				
GEOTECHNICAL CONCLUSIONS					
Foundations	Strip, pad, raft and pile foundations considered as part of a preliminary appraisal. However, the thickness of loose & locally unstable made ground (up to 2.56m) as well as locally soft underlying alluvial soils (up to c3.5m depth) renders strip, pad & raft foundations unsuitable at this site Mini-pile foundations are therefore recommended as the most viable founding solution, whereby building loads would be transferred into the competent, highly weathered mantle of the MRSL at depth; investigation findings should be provided to a specialist piling contractor for their design				
Floor Slabs	Suspended floor slabs, supported upon the pile cap ring beam				
Soakaways	Whilst soakaway testing at the stipulated location in the centre of the site (WS4) has shown the ground (made ground mantle) to be favorable in terms of infiltration potential, contamination leachate testing has shown that transmission of water through the mantle of made ground could generate arsenic, nickel, copper and zinc leachate, which could pose an unacceptable risk of impaction to groundwater / nearby surface waters.				

	It is recommended therefore that the siting of soakaways in the mantle of made ground be avoided. Alternative measures are therefore discussed in Section 5.				
Buried Concrete	Design Sulphate Class DS - 1 and ACEC Class AC - 1 suitable for proposed foundations				
FUTURE CONSIDERATIONS					
Uncertainties and Limitations	Subsurface conditions including ground contamination may vary spatially and with time Recommendations made in respect of land quality do not address any potential risks to site operatives or ground workers during the construction stage The groundwater table is subject to seasonal variation, dependent on the prevailing weather conditions Additional assessment may be necessary should a significant delay occur between report date and implementation of the proposed scheme to which it relates				
Further Works	 The following further works will be required: Discussions with LA Building Control to confirm the level/scope of radon protection measures required; Discussion with service providers regarding the materials suitable for water supply pipework etc; Discussions with LA regulatory bodies and/or warranty providers regarding the conclusions of this report incl. remediation recommendations Design of drainage strategy (by others) for surface water runoff Detailed design of foundations (by others) 				

This Executive Summary forms part of S10 Geo-Consulting Limited report No.22-137 (issue 1), dated 26th October 2022 and should not be used as a separate document

1.0 PROJECT AND SITE INFORMATION

1.1 APPOINTMENT

S10 Geo-Consulting Limited (S10) was instructed by Bernard Leach (St Ives) Trust Ltd (the "Client") to carry out a ground investigation at the following premises:

Leach Pottery, Higher Stennack, St Ives, Cornwall, TR26 2HE (hereafter referred to as the "Site").

The purpose of this assessment is to report on a ground investigation, itself designed to assess the Site's historical usage and geological setting and to ascertain the ground conditions in order to inform an appraisal of suitable founding options, as well as undertake a detailed quantitative contamination risk assessment. An assessment of the infiltration potential of the ground has also been carried out.

This report has been prepared in line with the agreed scope of works as set out within S10 quotation reference Q22-137 dated 5th August 2022, with e-mail instruction from Josh Yarien at Momentum Engineering, acting on behalf of the Client, received on 23rd August. Reliance on this report is granted to the Client only.

1.2 THE SITE

Table 1.2 below provides a summary of Site details and the surrounding area.

Ground Investigation Report Leach Pottery, Higher Stennack, St Ives, Cornwall, TR26 2HE Project No. 22-137

1.3 DESK STUDY RESEARCHES

1.3.1 Summary Findings

ltem	Site Affected?	Abnormals for development?			
Bedrock geology & Faulting	With the steel less in an area dominated by historic tin and copper ore mining, specifically tin ore mining as part of the St lyes Consols mine, although no actual shafts are recorded on-site or within influencing distance of the site boundary; depth to worked ore seams >100m below ground level	Map Lex Code Rock Name Rock Type Min and Max Age Colour LEIN Land's End Intrusion Granite Not Supplied - Carboniferous LEIN Land's End Intrusion Microgramite, Aptilic Not Supplied - Carboniferous MRSL Mylor Slate Formation Metabasalt Not Supplied - Frasnian MRSL Mylor Slate Formation Homfelsed Slate and Homfelsed Not Supplied - Frasnian UIID Unnamed Igneous Metagabbro and Metamicrogabbro Not Supplied - Prasnian Any clay/silt beds in the highly weathered mantle of the MRSL may be shrinkable and could therefore influence founding depth in the proximity of surrounding trees Historic mining-related risk – refer to Wheal Jane Consultancy Desktop Mining Search (Appendix 7)			
Superficial deposits	Image: consider the steeImage: consider the steeImage: consider the stee	Map Colour Lex Code Rock Name Rock Type Min and Max Age ALV Aluvium Clay, Silt, Sand and Gravel Not Supplied - Helocene MBD Marine Beach Deposits Sand and Gravel Not Supplied - Quatemary HEAD Head Clay, Silt, Sand and Gravel Not Supplied - Quatemary Alluvial clays/silts have the potential to be soft and shrinkable Not Suppled - Quatemary			
Artificial Ground and Landslip	No made ground or landslip terrain mapped within influencing distance of the site	No abnormals However, given the developed nature of the site, made ground associated with recent/historic anthropological influence should not be discounted. This may well include made ground / spoil derived from historic tin-ore mining operations.			

Table 1.3.1: Summary Geo-environmental Search Results

BGS Borehole Records	No nearby pertinent BGS borehole records	No abnormals		
Envirocheck Mining & Ground Stability Search Results	 Not located in a coal mining affected area, although it is located in an area affected by historic tin and copper mining; no actual shafts recorded on-site or within influencing distance; depth to worked ore seams >100m below ground level Closest man-made mining cavity recorded 90m NW (mineshaft), although other mineshafts recorded 39m E and 53m E, with the Cornish Shaft located 61m NW Site lies in the St Ives Consols mining area, which ceased operation in 1882 (tin ore) No nearby natural cavities Not located within the brine compensation district Closest extractive industry or potential excavation relates to St Ives Consols Mine (tin) from 1855 to 1909 upon land extending to the immediate west of the site; includes unspecified deposited material 47m NW Potential for collapsible ground stability hazards = very low / no hazard Potential for ground dissolution stability hazards = no hazard Potential for landslide ground stability hazards = very low Potential for running sand ground stability hazards = low Potential for shrinking/swelling clay ground stability hazards = very low 	Historic mining-related risk – refer to Wheal Jane Consultancy Desktop Mining Search (Appendix 7) Enquiries also made to Ove Arup & Partners, British Geological Survey & Stantec UK Ltd for further mining-related instability data. Only Ove Arup & Partners responded, although they hold no pertinent data for the site The highly weathered mantle of the MRSL bedrock material, as well as superficial alluvial soils, may be shrinkable; in addition to presence / proximity of nearby trees, such soils may therefore influence founding depths for new development		
Hydrogeology	MRSL & Alluvium - Secondary A Aquifers No nearby groundwater abstractors	Comprise permeable layers that can support local water supplies, and may form an important source of base flow to rivers		
Hydrology	Image: constrained on the set of th	No abnormals		
Groundwater Source Protection Zone	Νο	No abnormals		

Ground Investigation Report Leach Pottery, Higher Stennack, St Ives, Cornwall, TR26 2HE Project No. 22-137

UXO risk	Review of Zetica regional mapping indicates low risk of UXO incidence, suggesting no apparent requirement for progression to a more-detailed assessment	No abnormals
Environmentally sensitive	Environmentally sensitive area 165m south Area Of Outstanding Natural beauty 318m NW Local Nature Reserve 931m SE SSSI 908m north	No abnormals
Surrounding Land Use	Residential & commercial	No abnormals
Estimated Soil Chemistry (Landmark Info)	Arsenic 35-45mg/kg Cadmium <1.8mg/kg Chromium 40-60mg/kg & 60-90mg/kg Lead 200-300mg/kg Nickel 15-30mg/kg	Potentially naturally elevated arsenic and lead concentrations within near-surface ground
Supplementary Envirocheck Searches (<250m)	 No contaminated land register entries/notices No integrated pollution prevention & controls Closest pollution incidents to controlled waters recorded 32m NE in August 1991 when an unspecified pollutant was deliberately released into a freshwater stream/river from the public highway No registered radioactive substances No Control of Major Accident Hazards (COMAH) sites No explosive sites No Notification of Installations Handling Hazardous Substances(NIHHS) Closest contemporary trade directory entry – onsite Leach Pottery No fuel station entries; Parc An Creet Garage (fuel filling station incl. repair garage) formerly occupied land 34m north of the site No nearby, active discharge consents 	No

1.3.2 Site History

A selection of relevant historical Ordnance Survey map extracts is presented in Table 1.3.2 below alongside a summary of relevant points of interest that may affect or be affected by the proposed development.

Date (Source Map Scale)	OS Map Extract (NTS)	On-Site Features	Off-Site Features	
	100 100 <th>Buildings in northern half of site identified as Leach Pottery; some buildings locally extended Building in SW corner extended and identified as Beagle Cross (residence)</th> <th>111m W – works (unidentified) incl. surrounding residential development (Hellesvean Estate) Extensive residential expansion to the E and S of the site</th>	Buildings in northern half of site identified as Leach Pottery; some buildings locally extended Building in SW corner extended and identified as Beagle Cross (residence)	111m W – works (unidentified) incl. surrounding residential development (Hellesvean Estate) Extensive residential expansion to the E and S of the site	
1964-1964 1:2,500		Potential Contaminants with Potential To affect Site: As above, possibly including asbestos containing material (ACM) in site buildings / extensions / renovations Likelihood of Site Impact: Moderate		
		No significant change	25m NW – garage premises, possibly including forecourt Extensive residential expansion to the N and NE of the site	
1978 1:2,500		Potential Contaminants with Potential To affect Site: As above, possibly including hydrocarbons from off-site garage premises Likelihood of Site Impact: Moderate		
		Addition of small building in central- western part of site (existing car park	15m SW – fire station	
1995 1:2,500		Potential Contaminants with Potentia Likelihood of Site Impact: Moderate	al To affect Site: As above	
2021 1:10,000 and site walkover		Expansion of Leach Pottery – elongate timber workshop incl. raised walkway in the central-eastern part of the site, and small workshop to the SW of the car park; inclusion of Beagle Cross (former residence) as part of the Leac Pottery premises – learning workshop	 25m NW – garage no longer present; site recently cleared and currently being redeveloped for housing (flats) Continued residential expansion to the N, NW, NE and S of the site 	
		Potential Contaminants with Potentia TPH from vehicle leaks in car park are: Likelihood of Site Impact: Moderate	al To affect Site: As above, possibly including a of the site	

Note that, since Ordnance Survey plans only represent periodic snapshots in time, and do not provide a continuous record of previous Site usage, there is a potential risk that the Site may contain buried remnant foundations of former buildings or waste products associated with unrecorded previous site usage, which may not be evident from the site walkover inspection and desk study researches.

1.3.3 Desk Study Review

In conclusion, given the existing/historic occupancy of the Site as a commercial pottery premises including former residence (Beagle Cross in the SW corner of the site – building now used as learning studio) the potential future risk to human health and/or controlled waters arising from the proposed site redevelopment is generally considered to be low. <u>However</u>, historical Ordnance Survey mapping has shown that the site and immediate surrounding area is likely to have been affected by the historic mining legacy of the region (St Ives Consols Tin Mine); whilst actual mine subsidence risk is highly unlikely (refer to Wheal Jane Consultancy Desktop Mining Search in Appendix 7), the presence of 'general' made ground / spoil arising from historic anthropological actions should be considered as part of any risk assessment. This should include consideration of any landfill-type gas generation / migration arising from potentially deep made ground (possibly on-site/off-site) and off-site infilled mineshafts.

2.0 PRELIMINARY CONTAMINATION RISK ASSESSMENT

2.1 METHODOLOGY

The geo-environmental assessment comprising Phase 1 desk study followed by Phase 2 testing and quantitative contamination risk assessment has been carried out in accordance with BS10175:2011 "Code of Practice for the Investigation of Potentially Contaminated Sites" and EA document Land Contamination Risk Management (LCRM), which replaces the outgoing CLR 11 "Model Procedures for the Management of Land Contamination". Based upon the proposed commercial end use for the Site, the critical receptor is identified as a female of working age, aged 16+, and the assessment has been progressed on this basis.

The Site and its immediate surroundings have been assessed in terms of historical and current land use together with the environmental, geological and hydrogeological setting, the findings of which have been used to identify the following potential sources and principal contaminants of concern.

	Potential Sources	Principal Contaminants of Concern	
	General near surface made ground / topsoil	Toxic and phytotoxic metals, hydrocarbons (PAH & possibly TPH compounds), asbestos	
ON-SITE	Thick made ground (potentially infilled ground associated with historic mining legacy of the area)	Landfill-type gases; elevated metals concentrations	
	Bedrock Geology	Radon gas	
	Made ground (potentially infilled ground associated with historic mining legacy of the area)	Landfill-type gases	
OFF-SITE	Former fuel station premises located 34m north	Hydrocarbons Risk sensibly discounted by virtue of distance & topography – ground level falls to the NE, therefore any contaminants in the ground would sensibly migrate in that direction. Site also currently undergoing residential redevelopment – any old underground fuel storage tanks (USTs) and hydrocarbon-impacted ground, if/where present, likely to have been removed	

Table 2.1: Potential Sources & Principal Contaminants of Concern

2.2 PRELIMINARY CONCEPTUAL SITE MODEL

The resulting preliminary Conceptual Site Model is presented in Figure 2.2 below and illustrates how the presence of principal contaminants of concern, if proven, can be translated into potential pollutant linkages to future site users and local environmental receptors such as groundwater. The potential pollutant linkages are shown in Table 2.2 below.

Table 2.2: Summary of Potential Pollutant Linkages

Potential Sources Pathw	Pathways	Receptors						Comments	Preliminary Risk
		R1	R2	R3	R4	R5	R6		Assessment
ON SITE									
	P1	Х							
	P2	X					Х		
	P3		х						
S1	P4			x	x			Commercial development - greatest risk in areas of proposed soft landscaping, if/where proposed	Low
	Р5								
	P6								
	P7								
	P1	X							
	P2	X					Х		
	P3		х					Commercial development - greatest risk in areas of proposed soft landscaping	
S2	P4			X	X			Thick made ground may also represent a potential source of landfill-type gases, for which gas protection measures may be necessary in new buildings /	Moderate
	P5							extensions	
	P6	Х				X			
	P7								
	P1								
	P2							-	
	P3							Bedrock geology representing potential source of radon gas Public Health England UK Radon mapping indicates that the site lies in an area	
S3	P4							where the probability that the Site is above the Action Level is 10-30%; full radon protection measures will therefore be required in new buildings /	High
	P5							extensions	
	P6								
	P7	Х				Х			
OFF SITE									
	P1							-	
	P2							-	
	P3							Thick made ground may represent a potential source of landfill-type gases,	
S4	P4							which could migrate into the site Gas protection measures may be necessary in new buildings / extensions	Moderate
	P5								
	P6	Х				X		-	
	P7		-	-	-	-			-
	S1	General n	ear surface	made ground	l/topsoil				
SOURCES	S2	On-site th	ick made gr	ound associa	ted with his	toric mining	legacy of the	area	
	S3	Bedrock g	eology repre	esenting pot	ential source	of radon ga	S		
	S4	Off-site th	iick made gr	ound associa	nted with his	toric mining	legacy of the	e area	
	P1	Direct der	mal contact	or ingestion					
	P2	Inhalatior	of dust and	lvapours					
	P3	Permeatio	on into new	water supply	v pipework				
PATHWAYS	P4	Vertical le	aching of le	achable cont	aminants in	unsaturated	zone and lat	teral migration in saturated zone	
	Р5	Direct cor	itact with hi	gh sulphate-	bearing clay				
	P6	Landfill ga	is migration	through uns	aturated zon	e and accun	nulation with	in confined spaces	
	P7	Radon gas	migration t	hrough unsa	turated zone	e and accum	ulation withi	in confined spaces	
	R1	Future sit	e users						
	R2	Potable w	ater supply						
RECEPTORS	R3	Groundwa	ater (MRSL &	& alluvium cl	assified as a	'Secondary A	A' aquifers)		
RECEPTORS	R4	Surface w	aters (closes	st is Stennacl	k River coinc	ident with SI	E site bounda	ary)	
	R5	Proposed	site building	gs incl. concr	ete foundati	ons			
	R6	Adjacent	site occupan	its / users					

Ground Investigation Report Leach Pottery, Higher Stennack, St Ives, Cornwall, TR26 2HE Project No. 22-137

2.3 INVESTIGATION OBJECTIVES

Given the above and preceding discussions, intrusive ground investigation has been undertaken with the following objectives:

- Assess the ground conditions and determine the potential for land contamination, taking due consideration of former/existing site usage as well as the proposed site layout
- Use results as part of risk assessment modelling to determine levels of risk to future site users, groundwater quality and proposed buildings/infrastructure
- Evaluate ground conditions including geotechnical properties & groundwater levels (if applicable) to provide recommendations for appropriate foundations design
- Carry out soakaway testing to establish the infiltration potential of the ground

3.0 GROUND INVESTIGATION

3.1 METHOD STATEMENT & INVESTIGATION APPROACH

A method statement detailing how the Site investigation work was to be conducted was produced in accordance with current statutory guidance and best practice. In addition, a desk-based risk assessment was completed before site work commenced; this was reviewed on-site with contractors, who were briefed on the potential risks/hazards, and the appropriate personal protective equipment (PPE) to be adopted for this type of investigation.

This geotechnical investigation was conducted in general accordance with the requirements of Eurocode 7 'Geotechnical Design', in particular BS EN 1997-1:2004 and BS EN 1997-2:2007 and BS EN ISO 14688-1:2002 and 14688-2:2004. Reference has also been made to BS5930:2015 Code of Practice for Ground Investigation, and NHBC Standards Chapter 4.2 – 'Building Near Trees'.

The proposed development is considered to fall into the Geotechnical Category 2 classification, thus routine field and laboratory testing methods have been adopted.

This geo-environmental assessment has been carried out in accordance with BS10175:2011 "Code of Practice for the Investigation of Potentially Contaminated Sites" and EA document Land Contamination Risk Management (LCRM), which replaces the outgoing CLR 11 "Model Procedures for the Management of Land Contamination".

The investigation focused upon the objectives as set out in Section 2.3, and was completed on 16th September 2022.

3.2 SITE INVESTIGATION

3.2.1 Buried Services Avoidance

In addition to buried services records provided by the project architect and structural engineer, statutory buried services plans were reviewed in advance of attending site; all exploratory holes were sited to avoid possible buried services positions, and were checked on site with a Cable Avoidance Tool (CAT). Where possible, manholes were also traced; no buried services were encountered.

3.2.2 Borehole Drilling, Trial Pitting (manual) and Infiltration Testing: 15th & 16th September 2022

Intrusive investigation was undertaken using a combination of manual-excavation and borehole-drilling techniques. The number and location of all exploratory hole positions were predetermined by the project structural engineer, with the majority of the trial pits sited in order to establish the foundation profiles of the existing buildings. Positions were marked out on site using on and off-site reference points; their positions are indicated on drawing 3.2.2 below.

Ground Investigation Report Leach Pottery, Higher Stennack, St Ives, Cornwall, TR26 2HE Project No. 22-137

Four windowless-sample boreholes (WS1 – WS4) were drilled to depths of up to 5.45mbgl using an Archway Dart window-sampling rig, supplemented by two dynamic probe holes (DP1 – DP2), used to establish the deeper ground profile (though without sample retrieval) up to 10m depth. The boreholes were logged by an engineering geologist from this practice in accordance with Eurocode 7 (BS EN ISO 14688-1:2002 and 14688-2:2004), and representative samples taken for geotechnical and geo-environmental testing as appropriate. In order to assess the relative density of the material penetrated, in-situ standard penetration tests (SPTs) were carried out in all boreholes at 1m depth increments, and the resulting N values (uncorrected) are indicated on the respective borehole logs. Borehole WS4 was used to establish the infiltration potential of the ground; results are presented in Appendix 3 and discussed in Section 5 of this report. Following completion of logging and sampling all boreholes were backfilled with compacted arisings and surface soils replaced to make good.

Boreholes were supplemented by six manually-excavated trial pits (TP1 – TP4b) used to establish near-surface ground conditions and expose the foundations of the existing buildings, as well as obtain samples for contamination analysis, thereby providing good overall site coverage. Foundation profiles are presented upon the respective trial pit logs, to which reference should be made. The full depth of the foundations was not proven in all cases, and therefore where possible, additional pits were excavated to glean further information (TP1b & TP4b). The main limiting factor in proving founding depths was the presence of a thick layer of concrete beneath a large proportion of the site around/between the existing buildings (encountered in TP2 – TP4); in TP3 the concrete was core-drilled as far as possible, though could not be penetrated beyond 0.28m.

A detailed description of all the strata encountered, position and types of samples taken and any groundwater observations are included on the exploratory hole logs presented in Appendix 2, whilst a summary table of observed strata is presented below. The results of geotechnical laboratory analysis upon selected samples are presented in the subsequent tables.

3.3 GROUND CONDITIONS

3.3.1 Summary of Ground Conditions Encountered

Stratum	Base Depth (m)		Notes	
TOPSOIL: rooted, silty loam topsoil	0.25	E	Encountered in WS2 only	
MADE GROUND: generally mid-brown, slightly silty gravelly sand / sandy gravel of igneous rock incl. cobbles; locally containing charcoal fragments (WS4)	>0.41 - 2.26	Encountered in all exploratory holes; encountered to terminati all manually-excavated trial pits & WS3-WS4		
PROBABLE MADE GROUND: variable horizons of silty/sandy gravel and silty sand	1.96 – 2.56	Encountered in WS1 & WS2		
CLAY / SILT / SAND: variable horizons of silty clay, gravelly silt/clay and slightly silty sand (Alluvium)	3.3 - >3.45	Encountered in WS1 & WS2		
CLAY: brownish-grey mottled orange silty clay incl. siltstone/mudstone lithorelicts (Highly weathered Mylor Slate Formation)	>5.45	Encountered to termination in WS2 only; inferred to greater d (8-10m) in DP1 & DP3		
Roots and Desiccation	Ro WS2: WS3: WS4: TP2: TP4b:	o ts : : 0.4m : 0.6m : 1.1m 0.26m 0.22m	Desiccation: N/A – none identified	
Pit / borehole wall instability	Prevalent within n	ear-surface made ground	d – localised spalling of loose gravel cobbles	
Groundwater N.B It should be remembered that the groundwater table is subject to seasonal variation, dependent on the prevailing weather conditions, and the situation encountered could potentially change in the future, especially in a period of seemingly ever-apparent but unpredictable climate change	WS1: wet at 2.62m depth <u>Post Investigation Monitoring</u> WS1: Dry at 2.0m WS2: Dry at 3.0m			

As previously noted, Standard Penetration Tests (SPT) were undertaken in accordance with BS EN ISO 22476-3:2005 to assess the relative density of the material penetrated; unfactored N-values are presented upon the respective borehole logs in Appendix 2, with 'normalised/factored' results plotted against depth in Fig 3.3.1 below along with dynamic probe results (converted into equivalent SPT N-values).

3.3.2 **Geotechnical Laboratory Testing**

	Table 3.3.28: Moisture Content & Index Test Results & Classification										
WS No	Depth (m)	Sample of	Moisture Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Plasticity/ USCS	CI	<425um (%)	Modified Pl (%)	VCP (NHBC)
WS1	3.0	Al (clay)	25	39	27	12	Si_M	1.17	100	12	Low
WS5	5.0	MRSL (clay)	28	44	28	16	Si_M	1.0	100	16	Low

..... - - -_

Classification to EN ISO 14688-2:2004 Al: Alluvium

CI: Consistency Index VCP: Volume Change Potential MRSL: Mylor Slate Formation NP: Non-Plastic

Table 3.3.2b:	Chemical	Test Results	&	Classification
---------------	----------	--------------	---	----------------

WS No	Depth (m)	Sample of	Water soluble sulphate SO₄ (mg/l)	pH value in soil	Total sulphate SO ₄ (%)	Total sulphur (%)	Total potential sulphate SO₄ (%)	Oxidisable Sulphides SO ₄ (%)	BRI (2005) Cli DS	E SD1 assification ACEC
WS1	2.5-3.0	Al	5.2	8.0	0.014	0.012	0.036	0.022	DS-1	AC-1
WS2	2.0	MG	10.8	7.8	0.025	0.025	0.075	0.05	DS-1	AC-1
WS2	3.0	Al	3.4	7.9	0.005	<0.005	<0.015	0.01	DS-1	AC-1
WS2	5.0	MRSL	7.5	7.0	0.008	0.006	0.018	0.01	DS-1	AC-1

Al: Alluvium

MG: Made Ground

MRSL: Mylor Slate Formation

BH No	Depth (m)	Sample of	Fines (%)	Sand (%)	Gravel (%)	Classification				
WS1	2.5-3.0	AI	17	41	41	Clayey GRAVEL & SAND				
WS2	2.0	MG	24	30	47	Very sandy very clayey GRAVEL				

Table 3.3.2c: Particle Size Distribution Results

Al: Alluvium

MG: Made Ground

Classification to EN ISO 14688-2:2004

3.3.3 Contamination Laboratory Testing

The contamination sampling scheme was conducted in accordance with BS10175:2011 with sampling providing general spatial coverage across the site, as well as targeting any specific features identified in Phase 1 researches / reconnaissance. Representative samples of made ground and natural undisturbed soil, generally taken from the upper 1m of extracted ground, were sent to UKAS accredited i2 Analytical Environmental Science laboratories in Watford, where analysis selectively comprised the following:

- Toxic and phytotoxic metals
- pH
- Speciated polyaromatic hydrocarbons (PAH)
- Total Petroleum Hydrocarbons (TPH)
- Soil Organic Matter (SOM)
- Asbestos Screen / ID

The potential risk to groundwater resources was determined by leachate analysis upon a sample of near surface made ground, which was tested to determine the leachable content of toxic and phytotoxic metals. The certified laboratory test results are presented in Appendix 4, with findings discussed in Section 6.

4.0 GEOTECHNICAL MODEL & FOUNDATION RECOMMENDATIONS

This section provides a geotechnical assessment in connection with the proposed development works described within this report.

As previously noted, proposed development is concentrated in the central and southern parts of the site. Following demolition of the existing learning studio in the southwest, it is proposed to construct a new production studio and learning space, whilst a new museum entrance and café are proposed to the rear (east) of the existing car park area in the centre of the site. Proposals also include expansion of the raised walkway to include decking over the entirety of the gravel-surfaced courtyard.

Information concerning the envisaged building and foundation construction, as provided by the project structural engineer, is presented below for reference.

- It is anticipated that extensions will be formed primarily from timber construction with some steel inclusion, where required for larger spans.
- Anticipated foundation loads are subject to further detailed design work, but may be in the region of 100kN (point loads) and 65-75kN/m (line loads).

In the absence of definitive information pertaining to proposed building structure, foundation recommendations at this stage are relatively generic, based upon the above or assumed/envisaged methods of construction within the ground conditions encountered.

4.1 GEOTECHNICAL MODEL

4.1.1 Geotechnical Properties / Classification

Beneath surface topsoil/hardstand, site investigations have proven a thick mantle of made ground comprising variably loose to medium-dense sandy gravel / gravelly sand, containing large quantities of coarse gravel & cobbles up to 2.26m depth (WS2). This was underlain by probable made ground horizons of silty sand / gravel up to 1.96m depth in WS1 and 2.56m depth in WS2. It is worthy of note that excavation and drilling within the made ground mantle was difficult/problematic given the locally loose consistency, and resultant spalling/instability.

Beneath made ground, suspected alluvial material was recorded in WS1 and WS2 to around 3.3 – 3.5m, comprising variable horizons of sand, silt and clay. Whilst attaining a firm consistency in WS2, the more granular, silt/sand material in WS1 was locally loose and low strength, resulting in an SPT N-value of N=4. The same material was identified as wet at 2.62m depth. Laboratory index analysis upon a single sample of alluvium from WS1/3.0m classifies the material as intermediate plasticity silt of low volume change potential in accordance with NHBC Standards, whilst a Consistency Index value of 1.17 suggests no evidence of desiccation, which confirms visual observations.

Beneath alluvial soils, the highly weathered mantle of the mapped Mylor Slate Formation (MRSL) was recorded up to 5.45m depth in WS2, and inferred to in excess of 8-10m in DP1 and DP3. The material comprised firm to stiff silty clay with occasional mudstone / siltstone lithorelicts, which is classified as intermediate plasticity silt of low volume change potential in accordance with NHBC Standards. A Consistency Index value of 1.0 suggests no evidence of desiccation, confirming visual observations.

Based upon the foregoing, it is recommended that a low volume change potential classification be adopted for all natural soils beneath the site (alluvium & MRSL). On this basis, NHBC requires a minimum 0.75m founding depth with

localised deepening, as necessary, to address proximity of nearby trees and/or presence of rooted/desiccated soils and made ground (refer to Table 3.3.1 for the latter).

In terms of material strength / relative density, Fig 3.3.1 shows high variability in the mantle of made ground and underlying superficial alluvium. Within the weathered MRSL, the characteristic value line demonstrates a consistent increase in relative density from N_{60} = 20 at approximately 3.5m depth until SPT refusal (N_{60} = 50) is met at approximately 7m depth.

4.1.2 Appraisal of Founding Options

Consideration has first been given to construction upon conventional strip/trench-fill or pad foundations. Investigations to date have recorded a thick mantle of locally loose made ground / probable-made ground (up to 2.56m) underlain by locally soft and wet alluvial material (to between 3.3m and 3.5m depth). To ensure construction of foundations upon/within competent soils, it is recommended that all made ground and alluvial horizons be penetrated. This would clearly require significant excavation (>3.3-3.5m), which is considered beyond the realms of suitability for conventional strip/trench-fill or pad foundations, especially where excavation within/through loose made ground could be logistically problematic in terms of spalling/instability; this founding solution is therefore excluded as a viable option.

As a potential alternative, consideration has been given to a raft foundation solution, although construction of a raft and underlying granular blanket in such a constrained, narrow site (nearby buildings, roads & watercourse) is likely to prohibit this option from a logistical perspective - in line with NHBC guidance, the granular blanket beneath a raft would need to extend beyond the edges of the foundation by a distance equal to its natural angle of repose, plus 0.5m. Based upon the proximity of nearby existing buildings and infrastructure, this would not be possible. In addition, the construction of a raft upon a mantle of locally variable made ground could result in potentially significant differential settlement. A raft foundation is therefore excluded as a viable founding solution for this site.

Consideration has also be given to a pile foundation solution, whereby building loads would be transferred through near-surface soils to found within competent ground at depth. This requires an understanding of the deeper ground profile, as provided by the borehole drilling and supplementary dynamic probing (refer to Fig 3.3.1 for the strength-depth profile) in order to glean the necessary pile design parameters; this discussed further in Section 4.2 below.

In terms of existing foundations, six manually-excavated trial pits (TP1 – TP4b) were used to establish near-surface ground conditions and expose the foundations of the existing buildings; foundation profiles are presented upon the respective trial pit logs, to which reference should be made. The full depth of the foundations was not proven in all cases, and therefore where possible, additional pits were excavated to glean further information (TP1b & TP4b). The main limiting factor in proving founding depths was the presence of a thick layer of concrete beneath a large proportion of the site (encountered in TP2 – TP4); in TP3 the concrete was core-drilled as far as possible, though could not be penetrated beyond 0.28m. Based upon the wider ground conditions, it is envisaged that this impenetrable concrete slab was constructed upon the mantle of variably loose to medium-dense made ground encountered in the boreholes.

Where existing buildings are to be reconfigured, some buildings may need to be underpinned to avoid potential settlement/subsidence and/or undermining of existing foundations. To enable an assessment of which buildings / walls may need additional support, the structural engineer / architect should refer to the trial pit logs presented in Appendix 2.

Ground Investigation Report Leach Pottery, Higher Stennack, St Ives, Cornwall, TR26 2HE Project No. 22-137

4.2 FOUNDING RECOMMENDATIONS & DEPTHS – Pile foundations

Foundations should be constructed through any localised softer or disturbed deposits (including any/all made ground) to found in undisturbed, natural material, subject to also penetrating any rooted and/or desiccated soils; refer to Table 3.3.1 for details.

Based upon the foregoing requirements and the recorded ground profile, mini-pile foundations likely represent the most viable founding solution at this site, whereby building loads would be transferred through made ground & alluvial soils to reach a set in the competent MRSL mantle at depth. This approach would address the logistical issues of excavating through thick, loose / unstable made ground and locally soft underlying alluvial material, and would also mitigate the effect of nearby tree influence upon foundations otherwise constructed in shrinkable soils.

In order to establish the parameters necessary for pile design, all ground investigation data, including borehole & dynamic probe logs, should be forwarded to a specialist piling contractor for their advice in terms of pile type, diameter, depth and working load.

4.3 GENERAL RECOMMENDATIONS

4.3.1 Ground Floor Slabs

A suspended ground floor would lend itself well to a pile foundation solution, whereby it would be supported upon the pile cap ring beams.

4.3.2 Buried Concrete Classification

Based upon the results presented in Table 3.3.2b, buried concrete in strip/trench fill foundations can be constructed with a classification of Design sulphate Class DS-1 and Aggressive Chemical Class of AC-1 in accordance with BRE Special Digest 1 (2005) i.e. no special precautions.

4.3.3 Groundwater Considerations

With the exception of a wet alluvial horizon in WS1/2.62m, all exploratory holes were identified as dry upon completion of site work, with post-investigation monitoring also recording dry conditions in WS1/2.0m and WS3/3.0m. The wet horizon does not appear to correspond to the adjacent Stennack River level. Therefore whilst shallow groundwater issues are unlikely to present a widespread logistical issue in terms of excavation/construction, it should nevertheless be remembered that groundwater levels can vary seasonally, reaching their peak during/after traditionally wetter winter months.

4.3 MONITORING OF GROUND CONDITIONS DURING SITE DEVELOPMENT

In view of the importance of founding on natural ground, a careful watch must be maintained during all foundation excavations to ensure that this requirement has been satisfied. If/where existing foundations/structures/obstructions are encountered during excavations, all new foundations should be extended downwards to fully penetrate all redundant former construction.

Care should be taken to ensure that any instability of excavations does not affect existing structures and services (e.g. foundations, roads, boundary walls or buildings), both on and off-site. Where instability is a possibility, temporary

support should be adopted, and further advice should be sought from the appointed structural engineer regarding temporary works.

Care should be taken to ensure that any fall of material from foundation excavation faces does not adversely affect the integrity of the foundation concrete.

Inspection of foundation excavations should ensure that no root activity or evidence of desiccation is visible at foundation depth. Desiccation may vary seasonally, therefore depending upon the time of year at which construction takes place, it may be prudent to perform supplementary inspection/pitting to check for residual desiccation, prior to construction.

In the event of any doubt in the above matters, we would be pleased to attend site as instructed.

5.0 SOAKAWAY DRAINAGE

5.1 TESTING METHODOLOGY

In order to assess the infiltration potential of the ground and thereby the possible viability of a SUDS drainage system to serve the new construction, infiltration analysis performed as falling head tests, was carried out in WS4. The exercise comprised the rapid filling of the borehole using clean water delivered via a 25L drum, and monitoring of subsequent outflow.

Whilst not strictly confirming to BRE365 guidance, which requires large-scale tests to be carried out in machineexcavated pits using a bulk water supply, small-scale falling head tests in boreholes provide a useful indicator of infiltration potential; indeed, in this Practice's experience the calculated infiltration rates obtained via the two methods are often comparable. However it should be noted that, for detailed design of SUDS drainage systems, the Local Authority will often require that full-scale BRE365 compliant tests be carried out.

5.2 TEST RESULTS & RECOMMENDATIONS

Given the made ground thickness across the site (up to 2.26m depth, with probable made ground recorded in boreholes up to 2.56m), it was not viable to target the natural underlying ground for the testing. Notwithstanding, given that the natural underlying soil comprises alluvium containing a predominance of fines (clay/silt – refer to nearby WS2 log), it is expected that the alluvial deposit would nevertheless be largely impermeable and hence not suitable for soakaway adoption.

Repeat testing, in line with BRE guidance, was carried out. Calculated soil infiltration rates are presented in Tables 5.2, with site data and calculation sheets presented in Appendix 3. It should be noted that the made ground within which testing was carried out was unstable in the presence of water, resulting in spalling of loose material; as a result, the available depth of testing (response zone) in the borehole decreased with each of the three tests carried out.

BH No.	Test Depth Drainage Tes		Test No.	Infiltration Rate	Time to Drain to 50% Effective		
		Waterial			Storage Depth		
				(m/s)	(mins)		
	0.84-1.5	MG	1	1.5x10 ⁻⁵	29		
WS4	0.79-1.15	MG	2	8.1x10 ⁻⁵	4.5		
	0.78-1.07	MG	3	5.9x10 ⁻⁵	6		

Table 5.2: Infiltration Test Results (BRE365 methodology)

MG: Made Ground

Results show that the testing satisfies the minimum BRE requirement for proposed soakaway drains to drain down to achieve 50% storage capacity within 24 hours; at face value the ground, at the tested location and depth at least, is considered to be suitable for the adoption of a SUDS drainage system. However, leachate contamination testing (refer to Section 6.3) has recorded mild elevations of arsenic, nickel, copper and zinc in made ground at WS4/1.0m (area of proposed soakaway construction). As such it is recommended that the siting of soakaways in such made ground material should therefore be avoided in order to mitigate the risk of unacceptable leachate generation which could otherwise lead to impaction of groundwater (secondary A aquifer) / nearby surface waters (adjacent Stennack River).

Alternative measures are therefore recommended, such as transmission of surface water run-off to existing drainage networks and/or existing watercourse(s), (subject to the approval of the relevant Local Authority) possibly in conjunction with some degree of on-site attenuation. Alternatively it may be possible to remove the offending made ground in the area of proposed soakaway construction, and replace it with 'clean', granular material, thereby mitigating the potential for leachate generation. Again, the suitability of this approach is likely to be subject to Local Authority approval. A specialist drainage engineer should be consulted concerning any detailed drainage design as well as the size and capacity of any required attenuation.

6.0 CONTAMINATION RISK ASSESSMENT

6.1 METHODOLOGY & LIMITATIONS

The contamination risk assessment has been carried out in general accordance with the methodology described within Appendix 4.

In line with best industry practice the scope of contamination testing has been based upon the site history, proposed land usage and actual findings, with reference where necessary to DoE Industry Profiles and DEFRA/EA guidance. To the best of our knowledge information concerning the land quality assessment is accurate at the date of issue, however subsurface conditions including ground contamination may vary spatially and with time. There may be conditions pertaining to the site not disclosed by the above sources of information which might have a bearing upon the recommendations made, were such conditions known. Professional judgement has been used in order to limit this during the investigation.

The conclusions and recommendations made in respect of land quality do not address any potential risks to site operatives or ground workers during the construction stage. These issues should be addressed by the Principal Contractor in accordance with the relevant statutory procedures and regulations (CDM Regulations 2015).

It is important that these limitations be clearly recognised when the findings and recommendations of this report are being interpreted. Additional assessment may be necessary should a significant delay occur between report date and implementation of the proposed scheme to which it relates.

6.2 HUMAN HEALTH RISK

Laboratory test results are presented in Appendix 4. Table 6.2 below presents a summary of the findings with comparison against Tier 1 LQM/CIEH S4UL guideline values.

Determinant	Maximum Measured Concentration (mg/kg)	LQM/CIEH S4UL Commercial (mg/kg)	Tests Undertaken (No.)	Exceedances (No.)	Notes	
Arsenic	140	640	9	0		
Cadmium	<0.2	190	9	0		
Chromium (trivalent)	180	8,600	9	0		
Chromium VI	<1.8	33	9	0		
Lead	280	2330*	9	0		
Mercury	<0.3	1,100	9	0		
Selenium	<1.0	12,000	9	0		
Nickel	98	980	9	0		
Copper	400	68,000	9	0		
Zinc	460	730,000	9	0		
Naphthalene	<0.05	460	2	0		
Acenaphthylene	0.3	97,000	2	0		
Acenaphthene	<0.05	97,000	2	0		

Table 6.2: Comparison of Soil Chemical Test Results with Tier 1 Guideline Values

Ground Investigation Report Leach Pottery, Higher Stennack, St Ives, Cornwall, TR26 2HE Project No. 22-137

Determinant	Maximum Measured Concentration (mg/kg)	LQM/CIEH S4UL Commercial (mg/kg)	Tests Undertaken (No.)	Exceedances (No.)	Notes			
Fluorene	0.21	68,000	2	0				
Phenanthrene	3	22,000	2	0				
Anthracene	0.45	540,000	2	0				
Fluoranthene	6.4	23,000	2	0				
Pyrene	5.2	54,000	2	0				
Benzo(a)anthracene	4.7	170	2	0				
Chrysene	4.2	350	2	0				
Benzo(b)fluoranthene	5.5	44	2	0				
Benzo(k)fluoranthene	2.7	1,200	2	0				
Benzo(a)Pyrene	5.0	35	2	0				
Indeno(1,2,3-cd)Pyrene	2.9	510	2	0				
Dibenzo(ah)Anthracene	0.88	3.6	2	0				
Benzo(ghi)Perylene	2.7	4000	2	0				
TPH C6 – C8	<0.1	17,000	1	0				
TPH C8 – C10	<0.1	4,800	1	0				
TPH C10 – C12	<1.0	23,000	1	0				
TPH C12 – C16	<4.0	37,000	1	0				
TPH C16 – C21	<10	28,000	1	0				
TPH C21 – C40	<10	28,000	1	0				
Asbestos	ND	N/A – screen / ID	3	0				
Notes:								
* provisional C4SL based upon SOM of 2.5%								
<lod detection<="" laboratory="" less="" limit="" of="" td="" than="" –=""><td></td><td></td><td></td><td></td><td></td></lod>								
ND – non-detect								

- Concentrations of all individual toxic and phytotoxic metals fall below Tier 1 C4SL/S4UL levels for the existing/proposed commercial end-use, indicating no apparent, significant metals risk to human health. Progression to a Tier 2 assessment is therefore considered unnecessary, with no requirement for remedial measures to address metals concentrations based upon these results.
- Speciated PAH analysis has similarly recorded no elevations above S4UL levels; importantly Benzo(a)Pyrene (main PAH risk driver) analysis records concentrations well below the S4UL threshold. Based upon these findings, there is no requirement for further analysis or remedial measures to address potential PAH risk to human health.
- Given the localised car park usage in the centre of the site, a single sample from WS4 was taken and subjected to precautionary TPH analysis. Concentrations of all individual TPH carbon ranges fall below Tier 1 S4UL levels, indicating no apparent/significant impaction that could warrant further investigation/assessment.

 Whilst no apparent /obvious asbestos containing material (ACM) was identified during the investigation, given the presence of made ground across the site it was thought prudent to carry out screening upon selected samples. All results were returned as 'non-detect' for ACM, confirming visual observations and suggesting no requirement for further analysis or remedial measures to address ACM.

6.3 CONTROLLED WATERS RISK

10										
Leachable Determinant	Maximum Measured Concentration (µg/l)	WFD 2015 (groundwater) (μg/l)	WFD 2015 (surface water) (μg/l)	UK DWS 2000 (µg/l)	EA EQS (groundwater) (µg/l)					
Arsenic	33	7.5	37.5	10	50					
Cadmium	<0.08	3.8	0.08	5	0.08-0.25					
Chromium (trivalent)	1.0	37.5	3.4	50	4.7					
Lead	5.1	7.5	7.2	10	7.2					
Mercury	<0.5	0.8	0.07	1	0.07					
Selenium	<4.0	75		10						
Nickel	1.8	15	<1	20	20					
Copper	11	1,500	1	8-125	1-28					
Zinc	21		12.3	5,000	8-125					

Table 6.3: Comparison of Soil Leachate Test Results with Guideline Values

• Despite generally low total soils concentrations, leachate analysis has recorded mild elevations of arsenic, nickel, copper and zinc in made ground at WS4/1.0m (area of proposed soakaway construction). In consideration of the hydrological / hydrogeological status of the Site, whilst there could theoretically be a perceived risk to controlled waters (secondary A aquifer and adjacent Stennack River), given the existing/proposed predominance of impermeable hardstand and that the offending made ground beneath the site will differ little to that beneath the wider area (extending outside the site), pre-construction remedial measures in respect of controlled waters are therefore considered unnecessary. <u>However</u>, the suggested construction of a new soakaway in this area does raise concerns from a leachable contaminant perspective, since the channelling of surface/roof runoff into made ground could potentially create an unacceptable hotspot of leachate contamination, which could lead to aquifer / surface water impaction. As such, unless the offending made ground in this area can be removed prior to soakaway construction, it is recommended that an alternative method of surface runoff water disposal be explored; this is reiterated in Section 5.

6.4 LANDFILL GAS & RADON GAS RISK

The Preliminary Conceptual Site Model presented in Section 2.2 identified potentially infilled features (nearby mineshafts) as well as the possibility of thick made ground (both on-site and across the wider surrounding area) associated with the historic mining legacy. Gas monitoring wells were therefore installed in two of the boreholes, with subsequent monitoring performed on a single occasion to date (carried-out during optimum period of low and/or rapidly-falling atmospheric pressure; results are presented in Appendix 6).

The landfill gas risk assessment has been undertaken in general accordance with BS8485:2015 "Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings", and with reference

to Construction Industry Research and Information Association (CIRIA) 665: 'Assessing risks posed by hazardous ground gases to buildings' (2015).

As shown in Appendix 6, results record generally low levels of carbon dioxide (2.4 - 3.0%), nil methane and nil flow (0.0I/hr). These results are considered typical of 'general' made ground.

On this basis the implied maximum characteristic gas situation (CS) is derived by consideration of the maximum hazardous gas flow rate calculated from each single monitoring well, as shown in Table 6.4 below.

BH No.	Maximum Steady	Maximum Peak Gas Concentrations (%)		Peak Haza Flow Ra	ardous Gas ite (l/hr)	Implied	CS (l/hr)	Worst-Case CS (I/hr)			
	State Flow (I/hr)	Carbon Dioxide	Methane	Q _{hg} CO ₂	Q _{hg} CH₄	CO₂	CH₄	CO₂	CH₄		
WS1	0.0	2.4	0	0.0	0.0	1	1	1	1		
WS2	0.0	3.0	0	0.0	0.0	1	1	1	1		
Notes:			•		•		•	•	*		
CS =	equivalent to GSV in C665										
	Worst-Case (Worst-Case CS based on maximum observed flow rate and concentrations from any borehole during latest monitoring									

Table 6.4: Summary of Gas Monitoring Results & Maximum Characteristic Situation

Based upon the calculations of peak hazardous gas flow rates for individual boreholes, the site is categorised as CS1 in line with BS8485 guidance, for which a gas protection score of 0 is attributed i.e. no gas protection measures required.

It is acknowledged that, in line with BS8485 & CIRIA 665 guidance, a minimum of 3 rounds of monitoring is usually undertaken to provide a robust dataset. In this case however, given the negligible gas concentrations recorded during optimum falling atmospheric conditions, and also that full radon protection measures are required in new construction (see below), it was considered unnecessary to carry out further monitoring since robust radon protection measures should effectively deal with any low-level landfill-type gas concentrations.

With regards to radon, British Geological Survey data indicates a probability of 10-30% that the Site is above the Action Level, therefore full radon protection measures will be required within new construction at this site. As a minimum it is expected that an upgraded (minimum 1200gauge) radon-proof membrane and ventilated sub-slab voids will be required, with the membrane lapped across wall cavities and overlapped sheet joints, plus any service entry points carefully tape-sealed; this should be clarified with the local building control officer who should advise concerning the specific scope of measures required.

6.5 WASTE CLASSSIFICATION FOR OFF-SITE DISPOSAL OF ARISINGS

In accordance with current legislation, all soil arisings generated for disposal as part of this development site are by definition a "commercial waste" and will be classified as both a directive and a controlled waste. In view of the proposed construction, and hence the likely derivation of excavated arisings for off-site disposal, then as per the European Waste Catalogue (EWC) such material will be coded 1705, that is "soil (including excavated soil from contaminated sites), stones and dredging spoil".

It is recommended that all soil contamination test results (refer to Appendix 3) be provided to the receiving landfill operator for their assessment/interpretation and classification prior to acceptance, although based upon the generally low total soils concentrations it is expected that they would achieve a non-hazardous classification (TBC).

Laboratory contamination test results should be supplemented by the attached Waste Acceptance Criteria (WAC) results – carried out upon a composite sample of material derived from 0.2 – 3.0m depth from across the site (refer to Appendix 5). These results demonstrate that site arisings classify as inert, and therefore arisings requiring off-site disposal can be disposed of at a suitably licensed inert landfill site. Note that these findings should be forwarded the receiving landfill operator, prior to transporting the waste, for their review since landfill permitted thresholds can vary.

6.4 WATER SUPPLY PIPEWORK

Comparison to generic guidance as set out in the UK Water Industry Research (UK WIR) report 'Guidance for the Selection of Water Supply Pipes to be Used in Brownfield Sites' (2010) indicates that, at face value, recorded concentrations are unlikely to necessitate "toxic preventative measures" (i.e. upgrading of water supply pipework to a barrier pipe such as 'Protectaline' or similar), although it is recommended that advice be sought from the local regulatory authority / water provider prior to ordering pipework.

6.5 REFINED CONCEPTUAL SITE MODEL

In summary, laboratory contamination analysis and follow-up quantitative risk assessment has shown no significant human health in light of the proposed site redevelopment, although localised consideration may be required in terms of **controlled waters risk (specifically siting of proposed soakaways)** whilst **radon protection requirements** will require clarification from the local Building Control department.

In view of the above discussions the Preliminary Conceptual Site Model has been refined as shown in Figure 6.5 below.

Table 6.5: Summary of Identified/Potential Pollutant Linkages

Potential	Pathways		Receptors					Comments	Refined Risk Rating Remedial / Mitigatio	
Sources	Fatiways	R1	R2	R3	R4	R5	R6	comments	Kenned Kisk Rating	Requirements
ON SITE										
S1	P1 P2 P3 P4 P5 P6 P7			X	x			Whilst laboratory testing has shown that there could theoretically be a perceived risk to controlled waters (secondary A aquifer and adjacent Stennack River), given the existing / proposed predominance of impermeable hardstand and that the offending made ground beneath the site will differ little to that beneath the wider region outside the site, pre- construction remedial measures in respect of controlled waters are considered unnecessary. However, the siting of soakaways in such material should be avoided in order to mitigate risk of unacceptable leachate generation and impaction of groundwater / nearby surface waters	Low - Moderate	The siting of soakaways in made ground material should be avoided in order to mitigate risk of unacceptable leachate generation and impaction of groundwater / nearby surface waters
S2	P1 P2 P3 P4 P5 P6 P7	x				x		British Geological Survey data indicates a probability of 10-30% that the Site is above the Radon Action Level	Moderate - High	Full radon protection measures will be required within new construction; specific scope to be discussed with local Building Control
OFF-SITE										
NONE										
SOURCES	S1 S2	Made groui Bedrock geo	nd mantle ber ology represe	neath the site nting potentia	representing l	Iocalised leacl	hate risk to c	ontrolled waters		1
	P1	Direct derm	nal contact or	ingestion						
	P2	Inhalation o	of dust and va	pours						
	P3	Permeation	into new wa	ter supply pip	ework					
PATHWAYS	P4	Vertical lead	ching of leach	able contamir	nants in unsati	urated zone a	nd lateral mi	gration in saturated zone		
	P5	Direct conta	act with high	sulphate-bear	ing clay					
	P6	Landfill gas	migration thr	ough unsatur	ated zone and	accumulation	n within conf	ined spaces		
	P7	Radon gas r	nigration thro	ough unsatura	ted zone and	accumulation	within confi	ned spaces		
	R1	Future site	users							
	R2	Potable wa	ter supply							
	R3	Groundwat	er (Mylor Slat	e Formation 8	& superficial al	llivium classifi	ed as a 'Seco	ndary A' aquifers)		
RECEPTORS	R4	Surface wat	ters (closest is	s Stennack Riv	er to the imm	ediate SE)				
	R5	Proposed si	ite buildings i	ncl. concrete f	oundations					
	R6	Adjacent sit	te occupants,	/ users						

7.0 REFERENCES

Geotechnical

British Standards Institute, BS5930:2015 'Code of Practice for Ground Investigations'

National House Building Council (NHBC) Standards: Chapter 4.2 'Building Near Trees' (2016)

BS EN 14688: 'Geotechnical Investigation and Testing - Identification and Classification of Soil Part 1 Identification and Description' (2002)

BS EN 14688: 'Geotechnical Investigation and Testing - Identification and Classification of Soil Part 2 Principles for a Classification' (2004)

BS EN 14689: 'Geotechnical Investigation and Testing - Identification and Classification of Rock Part 1 Identification and Description' (2003)

British Standards Institute, BS 1377: 'British Standard Methods of Test for Soils for Civil Engineering Purposes', Parts 1 - 9, (1990)

Highways Agency Document HD 25/94 Volume 7, Section 2, Part 2 'Pavement Design and Construction – Foundations' (1994)

Building Research Establishment (BRE) Special Digest 1 'Concrete in Aggressive Ground' (2005)

British Geological Survey online & Landmark mapping 1:10,000 scale (Ref: 301237393_1_1 dated 14 Sept 2022)

Building Research Establishment (BRE) Digest DG365 "Soakaway Design" (2016)

Environmental

British Standards Institute, BS 10175: 'Code of Practice for the Investigation of Potentially Contaminated Sites' (2011)

EA document Land Contamination Risk Management (LCRM), which replaces the outgoing Environment Agency CLR 11: 'Model Procedures for the Management of Land Contamination'

Environment Agency/National House Building Council (NHBC) R&D 66 'Guidance for the Safe Development of Housing on Land Affected by Contamination' (2000) Chartered Institute of Environmental Health (CIEH)/Land Quality Management Limited (LQM). *CIEH/LQM. 'S4ULs for Human Health Risk Assessment'* (2015); Land

Quality Press

Department of the Environment, Transport & the Regions: 'The Environmental Protection Act 1990: Part IIA' (2000)

Construction Industry Research & Information Association (CIRIA) 665: 'Assessing Risks Posed by Hazardous Ground Gases to Buildings' (2007)

British Standards Institute, BS8485: 'Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings' (2015)

Building Research Establishment (BRE): Radon - 'Guidance on Protective Measures for New Buildings' (2015)

Landmark Historical Ordnance Survey mapping & Envirocheck data sheets (Ref: 301237393_1_1 dated 14 Sept 2022)

The Water Framework Directive (Standards and Classification) Directions (England and Wales)' (2015)

The Water Supply (Water Quality) Regulations 2000 (Amendment) Regulations (2007)

Environment Agency (www.environment-agency.gov.uk)

Health Protection Agency (www.hpa.org.uk)

Zetica (www.zetica.com)

UK WIR report 'Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites' (2010)

APPENDIX 2 – EXPLORATORY HOLE LOGS

WS1/DP1 WS2 WS3/DP3 WS4

TP1/TP1b TP2 TP3 TP4/TP4b

		4	_			BOREHOLE LOG					
						Site	The Leach	Pottery, S	St Ives		
						Job No.	2	2-137			
						Date	15	6/09/22			
S10) Ge	o-C	Con	sulti	nq	Client	The Le	ach Potte	ry		
Geotechnic	cal & Geo-e	nvironm	ental Gr	ound Inve	estigatior	Ground Level	51	.4 AOD			
Boreho	ole No.			Sheet		Co-ordinates	1508	09, 39874			
	21					Drilling Method	w Samplir	ıg			
~~~	51			1014		SPT Energy Ratio	75.73%				
Depth	Sample	SPT	HSV (kNm²)	Legend	Depth	Stratu	m Description	Geology	Monitoring Well		
				>>>>>	0.09	MADE GROUND: Tarmac I	hardstand (2 layers)				
0.5m	Bag			$\otimes$		slightly silty clay	o orango, knak brown and groy,	]	Plain & bentonite		
— 1.0m		N = 26			1.74	MADE GROUND: Probable slightly silty, gravelly to very subangular, medium to coa with occasional to rare pott and slate with rare fine cha	e loose to medium dense, mid brown, y gravelly, 'soily' sand. Gravel is rrse igneous rock including cobbles ery and sheet metal fragments, brick rccal				
1.8m	Bag			<u> </u>	1.81	sandy 'soily' element pre	dominantly mid brown/orangish	PMG/AL	Slotted & gravel		
— 2.0m		N = 4			1.96	SAND: Probable loose to mottled reddish brown, slig GRAVEL: Probable mediur	medium dense, greyish brown ghtly silty sand n dense, brownish grey, sandy	PMG/AL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
2.5-3.0m	Bag				0.40	gravel. Gravel is subangula quartzite/igneous rock	ar to subrounded, fine				
— 3.0m		N = 31				SILT/SAND: Probable loose becoming gravelly below c2 material is damp/wet at/l	e, greyish brown silt / sand; 2.5m below c2.6m	AL			
— 4.0m						Borehole terminated a rods and collapse of loc probe carried	t 3.45m depth due to bending drill ose cobbles near surface; dynamic out adjacent to borehole				
— 5.0m											
						   Na	otes		1		
Casing Trees	used	N R	lo tefer to s	site drawi	ing	CA AL	T-scanned - no services identi - Alluvium	fied / enco	ountered		
Roots	_	Ν	lone ide	ntified		Co	<u>re Recovery</u>				
Desicca	ition oundwater	N V	lone ide Vet at 2.	ntified 62m		0.0 1.0 2.0	) - 1.0m Hand-dug starter pit ) - 2.0m 75% ) - 3.0m 50%				
		G	ias valve	e and cov	/er insta	IIEd All	dimensions in metres (NTS)				

This is a site log only and the data are subject to ammendment after checking by engineer or geologist



4

# DYNAMIC PROBE LOG

DYNAMIC PR		UG						Paulea	Cool	Ground
Client: SIO			CGI Contra	ct No:			Site Name:	St. Wes		
Date: 15 . 9 . 7	2	(	WS/DP				Page No: 1			
Depth (m)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
Number of blows	4	2	١	x -	1	1	2	2	2	2
Depth (m)	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
Number of blows	4	6	3	2	r	Z	1	3	3	2
Depth (m)	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3
Number of blows	0	0	1	0	2	1	1	2	2	2
Depth (m)	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4
Number of blows	0	i	4	2	1	1	٦	b	2	2
Depth (m)	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5
Number of blows	3	2	2	N	3	3	2	3	3	4
Depth (m)	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6
Number of blows	4	S	t	Ь	9	7	7	7	7	7
Depth (m)	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9	7
Number of blows	٦	٦	7	7	θ	5	5	4	Ь	7
Depth (m)	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9	8
Number of blows	6	ь	6	7	7	7	7	6	7	7
Depth (m)	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9	9
Number of blows	6	6	7	р	6	Ь	7	5	5	4
Depth (m)	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9	10
Number of blows	5	5	5	5	5	4	5	6	5	5
Depth (m)	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9	11
Number of blows										
Depth (m)	11.1	11.2	11.3	11.4	11.5	11.6	11.7	11.8	11.9	12
Number of blows	-					2	14 . 1			
Depth (m)	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13
Number of blows			and the						1	
Depth (m)	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13 <mark>.</mark> 9	14
Number of blows			-		1.1.1			-		
Depth (m)	14.1	14.2	14.3	14.4	14.5	14.6	14.7	14.8	14.9	15
Number of blows	E.	la l				1				· · · ·
Drive weight: 63.5	kg +/- 0.5kg		Nor	n. Cone area:	20cm ²	-	Rig Type:		Lead Driller:	
Drop height: 750n	nm +/- 20m	m	Con	e mantle leng	th: 50.5mm	+/- 2mm	Archway Com	petitor Dart	Ben Cook	
			Con	e tip length:	5.3 +/- 0.4m	m	Additional Pl	ant:		

Cook Ground Investigation Limited T: 01963 350151 / 07973 573414 Email: Ben@cookgi.co.uk Website: www.cookgi.co.uk

2

		4	_			BOREHOLE LOG						
						Site	The Leach	Pottery, S	t lves			
						Job No.	22	2-137				
						Date	15	/09/22				
S1C	) Ge	o-C	Con	sulti	ng	Client	The Lea	ach Potte	ry			
Geotechnio	cal & Geo-e	nvironm	ental Gro	ound Inve	estigation	Ground Level	50.	2 AOD				
Boreb	ole No			Shoot		Co-ordinates	15081	13, 39895				
	20			Sileet		Drilling Method	Window	v Samplin	g			
VV.	52			2 of 4		SPT Energy Ratio	Er =	75.73%				
Depth	Sample	SPT	HSV (kNm²)	Legend	Depth	Stratum	n Description	Geology	Monitoring Well			
					0.25	Grass over dark brown, silty	loam topsoil with roots/rootlets					
0.5m — 1.0m	Bag Bag	N = 10			2.26	MADE GROUND: Probable I gravelly to very gravelly, sligh rootlets up to c0.4m; locally r Gravel is angular to subangu cobbles	loose to medium dense, mid brown, ntly silty sand with occasional fine recovered as sandy/clayey gravel. Ilar,fine to coarse igneous rock with		Plain & bentonite			
– 2.0m	Bag	N = 19		>>>>					Slotted & gravel			
			2.65m Cu=55		2.56	probable MADE GROUND: F and pale grey, slightly silty/sa	Probable medium dense, orange andy, fine to medium gravel of	 AL				
- 20m	Bag	N - 47				localised charcoal/ashy pa	arting (10mm thick) at 2.33m					
- 3.0m	Day	N = 17			3.3	CLAY: Firm, brownish grey m orange, thinly laminated, slig	nottled brownish yellow and htly silty clay	AL				
— 4.0m		N = 20			5.45	to medium igneous rock with CLAY: Probable firm, of to medium igneous rock with CLAY: Probable firm to stiff, I clay with occasional siltstone	brownish grey mottled orange, silty wey silt. Gravel is subangular, fine occasional siltstone/mudstone brownish grey mottled orange, silty	MRSL				
— 5.0m	Bag	N = 27										
6.0m		N = 57				Borehole terminated continue	at 5.45m depth; CPT testing d to 6.42m depth					
	<u> </u>					Note		field / care				
Casing	used	N	0			AL-	-scanned - no services identit Alluvium	iiea / enco	buntered			
Trees		R	efer to s	site drawi	ng	MRS	SL - Mylor Slate Formation					
Roots		C	0.4			0.0 -	<u>e Recovery</u> - 1.0m Hand-dug starter pit					
Desicca	ation	N	one ide	ntified		1.0 -	- 2.0m 40%					
Dry/Gro	oundwater	D	ry			2.0 - 3.0 -	- 3.0m 100% - 4.0m 70%					
		G	ias valve	e and cov	ver insta	lled 4.0 -	- 5.0m 50%					

All dimensions in metres (NTS)

						E	BOREHOLE L	OG		
						Site	The Le	ach Potte	rv. S	t lves
						Job No.		22-137	,	• • • • •
						Date		15/09/2	2	
S10	Ge	o-C	Con	sulti	na	Client	Th	Leach P	otter	у
Geotechnic	al & Geo-e	nvironm	ental Gro	ound Inve	estigation	Ground Level		50.1 AO	D	
Daraha						Co-ordinates	1	50829, 39	909	
Boreno				Sneet		Drilling Method	Wi	ndow San	nplin	g
VV3	53			3 of 4		SPT Energy Ratio Er = 75.73%				
Depth	Sample	SPT	HSV (kNm²)	Legend	Depth	s	Stratum Description	Geo	logy	Monitoring Well
				****	0.05	MADE GROUND: Su	Irface gravel scalpings (car park)			
					0.20	MADE GROUND: Pr aravel scalpings	obable medium dense, pale yellowish	rown		
— 1.0m				*****	0.7	MADE GROUND: Pr variably gravelly, slig c0.7m. Gravel is sub many cobbles at/belo impenetrable by h dynamic probe carrie	obable loose to medium dense, mid br htly silty, 'soily' sand with fine rootlets angular, fine to coarse igneous rock wi ow 0.5m depth and digging and drilling below 0.7m de ed out instead	pwn, p to h hth;		
— 2.0m						Borehole terminate	ed at 0.7m depth; dynamic probe car out	ied		
— 3.0m — 4.0m										
— 5.0m										
Casing to Trees	used	N	o efer to s	site drawi	ng		<i>Notes</i> CAT-scanned - no services io	entified /	enco	ountered
Roots		0	.6				Core Recovery			
Desicca	tion	N	one ide	ntified			0.0 - 0.7m Hand-dug starter	it		
Dry/Gro	Desiccation None identified Dry/Groundwater Dry Gas valve and cover insta					lled	All dimensions in metres (NT	6)		

This is a site log only and the data are subject to ammendment after checking by engineer or geologist

	ROBE L	OG	CGI Contra	at No.		- m	City N	Pottery	Coo Inve	Cook Ground	
Date: 15 9.	22		WS/DD	2			Site Name	St. We	5		
Depth (m)	0.1	0.2	0.3	0.4	0.5	0.6	Page No: 1	0.8	0.9		
Number of blows						0.0	2 5.7	1.1	0.9		
Depth (m)	1.1	1.2	1.3	1.4	1.5	1.6	1.7	18	19	6	
Number of blows	9	3.2	8	16	G	9	E	~	1.5	10	
Depth (m)	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3	
Number of blows	7	8	12	71	17	17	7.4	M	8	6	
Depth (m)	3.1	3.2	3.3	3.4	3.5	3.6	37	3.8	39	3	
Number of blows	3	3	2	3	2	3	3	2	4	<	
Depth (m)	4.1	4.2	4.3	4.4	• 4.5	4.6	4.7	4.8	4.9	5	
Number of blows	10	12	11	11	11	12	10	7	-	5	
Depth (m)	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6	
Number of blows	5	5	6	5	Ь	7	h	7	7	8	
Depth (m)	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9	7	
Number of blows	8	7	7	10	17	10	9	7	7	7	
Depth (m)	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9	8	
Number of blows	7	8	7	8	7	6	7	7.	7	8	
Depth (m)	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9	9	
Number of blows					ed.		1				
Depth (m)	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9	10	
Number of blows		2		N A FI				2			
Depth (m)	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9	11	
Number of blows			1.87	2		144				1. 8	
Depth (m)	11.1	11.2	11.3	11.4	11.5	11.6	11.7	11.8	11.9	12	
Number of blows					40	-				1	
Depth (m)	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13	
Number of blows									101.0	in ste	
Depth (m)	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9	14	
Number of blows				*			12				
Depth (m)	14.1	14.2	.14.3	14.4	14.5	14.6	14.7	14.8	14.9	15	
Number of blows	100				4	114					
Drive weight: 63.5 Drop height: 750r	kg +/- 0.5kg nm +/- 20m	m	Non Con Cone	n. Cone are e mantle lei e tip length:	a: 20cm ² ngth: 50.5mm 55.3 +/- 0.4m	+/- 2mm m	Rig Type: Archway Com Additional Pl	apetitor Dart	Lead Driller: Ben Cook		

Cook Ground Investigation Limited T: 01963 350151 / 07973 573414 Email: Ben@cookgi.co.uk Website: www.cookgi.co.uk

		4	_			BOREHOLE LOG					
						Site	The Leach	Pottery, S	t Ives		
						Job No.	22	2-137			
	_					Date	15	/09/22			
S10	Ge	o-C	lon	sulti	na	Client	The Lea	ach Potter	у		
Geotechnic	ral & Geo-e	nvironm	ental Gr	ound Inve	estigation	Ground Level	50.0 AOD				
Geoteennie		II VII OITIII	cintar Or		Sugation	Co-ordinates	15083	0, 39914			
Boreho	ble No.			Sheet		Drilling Method	Drilling Method Window Sampling				
WS	54			4 of 4		SPT Energy Rat	io Fr =	75 73%	,		
Depth	Sample	SPT	HSV (kNm ² )	Legend	Depth	S S	Stratum Description	Geology	Monitoring		
			(	XXXXX	0.12	MADE GROUND: Ta	rmac hardstand		vven		
				$\times$	0.35	MADE GROUND: Co	ncrete over plastic membrane				
— 1.0m	Bag				1.8	MADE GROUND: Lo gravelly 'soily' fine sa subangular, fine to co charcoal becoming very gra depth	ose, mid brown/greyish brown, slightly silty, nd with fine roots/rootlets. Gravel is parse igneous rock with occasional to rare velly and locally orangish brown at 1.5m				
— 2.0m											
— 3.0m						Borehole termin cobble; made g completio	nated at 1.8 depth upon impenetrable ground collapsed back to 1.5m upon n; infiltration testing carried out				
— 4.0m — 5.0m											
Casing used No Trees Refer to site drawing Roots c1.1m Desiccation None identified Dry/Groundwater Dry Gas valve and cover insta					ng ver insta	lled	Notes CAT-scanned - no services identi <u>Core Recovery</u> 0.0 - 1.16m Hand-dug starter pit 1.16 - 1.8m 80% All dimensions in metres (NTS)	fied / enco	puntered		









Logged by Simon Wilkinson, S10 Geo-Consulting Limited





Logged by Simon Wilkinson, S10 Geo-Consulting Limited	Stable/Unstable:	Stable



# **APPENDIX 3 – INFILTRATION TEST RESULTS SHEETS**

WS4 – Test 1 WS4 – Test 2 WS4 – Test 3









### **APPENDIX 4**

### **Contamination Statutory Framework Methodology**

In line with the definition set out within Part 2A of the Environmental Protection Act 1990 (inserted by Section 57 of the Environment Act 1995), land is classified as 'contaminated land' when substances within or under the land result in significant harm being caused, or pose a significant possibility of significant harm, and/or where pollution of controlled waters is being caused, or is likely to be caused. A revision to the guidance in 2012 introduced a new four category approach in classifying land affected by contamination:

Category 1: there is an unacceptably high probability, supported by robust science-based evidence, that significant harm would occur if no action is taken to stop it.

Category 2: there is a strong case for considering that the risks from the land are of sufficient concern that the land poses a significant possibility of significant harm.

Category 3: land where the risks are not low, but nonetheless the authority considers that regulatory intervention under Part 2A is not warranted.

Category 4: land that is clearly not contaminated land, where there is no risk or the level of risk posed is low.

New Category 4 Screening Levels (C4SLs) were subsequently developed by DEFRA and published by CL:AIRE, resulting in a framework and methodology including screening values for six common contaminants, in order to provide a simplified test for regulators to aid decision making on when land was suitable for use. Further research by LQM in conjunction with CIEH resulted in the publication of Suitable for Use Levels (S4UIs), which are now utilised as a robust source of guidance.

In the event that land is determined as contaminated land, the enforcing authority must consider how it should be remediated and, where appropriate, it must issue a remediation notice to require such remediation. The enforcing authority may be the local authority or the Environment Agency.

New legislation concerning the UK guidance on the assessment of land contamination is set out in the Contaminated Land Reports (CLRs); there were originally twelve documents introduced, although CLR reports 7-10 were withdrawn by DEFRA & EA, with updated versions of CLR 9 and CLR 10 produced in the form of Science Report SR2 and SR1. These documents discuss the risk being a combination of probability/frequency/occurrence of a defined hazard, as well as magnitude. For a risk of pollution or environmental harm to occur as a result of ground contamination, the source – pathway – receptor concept must be applied; if any one of these elements is missing, there can be no significant risk.

The presence or potential presence of contamination is a material issue in local authority's determination of planning applications, and where a change of use is proposed, especially on brownfield land; investigation, assessment and remediation of contamination is often a requirement of the Planning Authority.

### **Contamination Risk Assessment Methodology**

Initially, a preliminary Conceptual Site Model is developed as part of a Phase 1 desk study assessment to establish potential contaminant sources, pathways and receptors. This qualitative risk assessment considers the consequence of the potential risk (minor to severe), and the likelihood (unlikely to highly likely) within a risk matrix to establish the probability of potential hazards (very low to very high).

Follow-up Phase 2 assessment, where required, comprises quantitative assessment of human health risk by comparison of soil concentrations (laboratory test results) against Tier 1 C4SLs and/or S4Uls, taking into account the variations in the guideline values brought about by varying soil organic content (data sets for 1%, 2.5% or 6% SOC can be applied as appropriate).

Contaminant concentrations below Tier 1 screening values are considered not to warrant further risk assessment.

If/where contaminant concentrations exceed Tier 1 thresholds, then there exists a potentially unacceptable risk to human health (although not necessarily a requirement for remediation), for which progression to a Tier 2 assessment is required, where site-specific parameters are used to derive site specific assessment criteria (SSAC) within the CLEA Model (v1.07).

In terms of controlled waters, leachable-soil or groundwater laboratory test results are compared against Level 1 Environmental Quality Standard (EQS) values derived from the Water Framework Directive (Standards and Classification) Directions (England & Wales) 2015, and the current UK Drinking Water Supply (Water Quality) Regs (DWS), dependent upon the most vulnerable receptor.





Simon Wilkinson S10 Geo-Consulting Ltd 17 Birchwood Road Woolaston Lydney Gloucestershire GL15 6PE

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

- t: 01923 225404
- f: 01923 237404
- e: reception@i2analytical.com

e: info@s10geo.co.uk

# Analytical Report Number : 22-85391

Project / Site name:	St Ives	Samples received on:	22/09/2022
Your job number:	22 137	Samples instructed on/ Analysis started on:	22/09/2022
Your order number:	22 137	Analysis completed by:	30/09/2022
Report Issue Number:	1	Report issued on:	30/09/2022
Samples Analysed:	1 leachate sample - 9 soil samples		

Izabela Wojcik Signed:

Izabela Wójcik Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland. Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation. Standard sample disposal times, unless otherwise agreed with the laboratory, are : Soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Lah Cample Number		2421050	2421950	2421960	2421961	2421962		
				2431858	2431859	2431860	2431861	2431862
Sample Reference				WS1	WS1	WS2	WS2	WS4
				None Supplied				
Depth (m)				0.50	0.180	0.50	1.00	1.00
Time Taken				15/09/2022	15/09/2022	15/09/2022	15/09/2022	15/09/2022
	1	-		None Supplied				
Analytical Parameter (Soil Analysis)	Units	imit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	17	5.4	17	17	7.9
Total mass of sample received	kg	0.001	NONE	0.4	0.4	0.4	0.4	0.3
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	-	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	SFS	N/A	N/A	SFS	SFS
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.2	7.5	7.8	7.8	7.9
Organic Matter (automated)	%	0.1	MCERTS	-	0.3	3	-	-
Sneciated DAHs								
Naphthalene	ma/ka	0.05	MCERTS	< 0.05	_	_	_	
Acenanhthylene	ma/ka	0.05	MCERTS	0.3	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS	0.21	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	3	-	-	-	-
Anthracene	mg/kg	0.05	MCERTS	0.45	-	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	6.4	-	-	-	-
Pyrene	mg/kg	0.05	MCERTS	5.2	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	4.7	-	-	-	-
Chrysene	mg/kg	0.05	MCERTS	4.2	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	5.5	-	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	2.7	-	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	5	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	2.9	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.88	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	2.7	-	-	-	-
Total DAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	44.2	-	-	-	-
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	140	21	120	130	98
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	36	15	27	25	31
Copper (aqua regia extractable)	mg/kg	1	MCERTS	400	45	270	300	170
Lead (aqua regia extractable)	mg/kg	1	MCERTS	280	15	150	140	140
Mercury (aqua regia extractable)	mg/kg	0.3	MCEDTC	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	20	12	22	24	2/
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	51.15	_		00	23	T-IO	130	100
Petroleum Hydrocarbons								
TPH Texas (C6 - C8) HS_1D_TOTAL	mg/kg	0.1	ISO 17025	-	-	-	-	< 0.1
TPH Texas (C8 - C10) HS_1D_TOTAL	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
TPH Texas (C10 - C12) EH_CU_1D_TOTAL	mg/kg	1	MCERTS	-	-	-	-	< 1.0
TPH Texas (C12 - C16) EH_CU_1D_TOTAL	mg/kg	4	MCERTS	-	-	-	-	< 4.0
TPH Texas (C16 - C21) EH_CU_1D_TOTAL	mg/kg	10	MCERTS	-	-	-	-	< 10
TPH Texas (C21 - C40) EH_CU_1D_TOTAL	mg/kg	10	MCERTS	-	-	-	-	< 10
IPH Iexas (C6 - C40) EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	-	-	-	-	< 10





Lab Sample Number				2431858	2431859	2431860	2431861	2431862
Sample Reference	WS1	WS1	WS2	WS2	WS4			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.50	0.180	0.50	1.00	1.00			
Date Sampled	15/09/2022	15/09/2022	15/09/2022	15/09/2022	15/09/2022			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

U/S = Unsuitable Sample I/S = Insufficient Sample





Lab Sample Number				2431863	2431864	2431865	2431866
Sample Reference				2431803 TP2	2431004 TP3	2431803 TP48	2431800 TP4B
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Denth (m)				0.40	0.20	0.25	0.25
Date Sampled				16/09/2022	16/09/2022	16/09/2022	16/09/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
	I	Ξ.		Hone Supplied	Hone Supplied	Holle Supplied	Hone Supplied
Analytical Parameter (Soil Analysis)	Units	mit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	8	8.4	24	15
Total mass of sample received	kg	0.001	NONE	0.4	0.4	0.4	0.4
			•				
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	-	-
Asbestos Analyst ID	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			•				
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	9.6	9.1	7.7	8.1
Organic Matter (automated)	%	0.1	MCERTS	-	-	-	3.5
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	-	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	0.29
Anthracene	mg/kg	0.05	MCERTS	-	-	-	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	0.63
Pyrene	mg/kg	0.05	MCERTS	-	-	-	0.6
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	0.4
Chrysene	mg/kg	0.05	MCEDITS	-	-	-	0.45
Benzo(b)fluorantnene	mg/kg	0.05	MCEDTS	-	-	-	0.51
Benzo(k)nuorantnene	mg/kg	0.05	MCERTS	-	-	-	0.22
	mg/kg	0.05	MCERTS	-		-	0.43
	ma/ka	0.05	MCERTS		-		< 0.05
Benzo(abi)pervlene	mg/kg	0.05	MCERTS	_	_	_	0.05
							0.20
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	-	-	4.1
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	81	44	120	130
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	16	12	180	140
Copper (aqua regia extractable)	mg/kg	1	MCERTS	240	82	170	350
Lead (aqua regia extractable)	mg/kg	1	MCERTS	20	23	72	110
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	11	7.7	98	70
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	iiig/kg	Ĩ	PICERTS	58	100	120	120
Petroleum Hydrocarbons							
	ma/ka	0.1	ISO 17025	_	-	_	I
TPH Texas (C8 - C10) Hs 1D TOTAL	ma/ka	0.1	MCERTS	-	-	-	
TPH Texas (C10 - C12) EL CLUS TOTAL	ma/ka	1	MCERTS	-	-	-	
TPH Texas (C12 - C16) EN CLUD TOTAL	mg/ka	4	MCERTS	-	-	-	-
TPH Texas (C16 - C21) EH CLUD TOTAL	mg/kg	10	MCERTS	-	-	-	
TPH Texas (C21 - C40) FH CU 1D TOTAL	mg/kg	10	MCERTS	-	-	-	-
TPH Texas (C6 - C40) EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	-	-	-	-
						-	





Lab Sample Number				2431863	2431864	2431865	2431866
Sample Reference			TP2	TP3	TP4B	TP4B	
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)				0.40	0.20	0.25	0.25
Date Sampled				16/09/2022	16/09/2022	16/09/2022	16/09/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
U/S = Unsuitable Sample I/S = Insufficient Sample							





### Analytical Report Number: 22-85391 Project / Site name: St Ives

Your Order No: 22 137

Your Order No: 22 137					
Lab Sample Number			2431867		
Sample Reference		WS4			
Sample Number				None Supplied	
Depth (m)		1.00			
Date Sampled				15/09/2022	
Time Taken	None Supplied				
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status		

### Heavy Metals / Metalloids

Arsenic (dissolved)	µg/l	1	ISO 17025	33
Boron (dissolved)	µg/l	10	ISO 17025	27
Cadmium (dissolved)	µg/l	0.08	ISO 17025	< 0.08
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0
Chromium (dissolved)	µg/l	0.4	ISO 17025	1
Copper (dissolved)	µg/l	0.7	ISO 17025	11
Lead (dissolved)	µg/l	1	ISO 17025	5.1
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5
Nickel (dissolved)	µg/l	0.3	ISO 17025	1.8
Selenium (dissolved)	µg/l	4	ISO 17025	< 4.0
Zinc (dissolved)	µg/l	0.4	ISO 17025	21

U/S = Unsuitable Sample I/S = Insufficient Sample





# Analytical Report Number : 22-85391

Project / Site name: St Ives

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2431858	WS1	None Supplied	0.5	Brown loam and sand with gravel and vegetation.
2431859	WS1	None Supplied	0.18	Brown loam and sand with gravel and vegetation.
2431860	WS2	None Supplied	0.5	Brown loam and sand with gravel and vegetation.
2431861	WS2	None Supplied	1	Brown loam and sand with gravel and vegetation.
2431862	WS4	None Supplied	1	Brown loam and sand with gravel and vegetation.
2431863	TP2	None Supplied	0.4	Brown loam and sand with gravel and vegetation.
2431864	TP3	None Supplied	0.2	Brown loam and sand with gravel and vegetation.
2431865	TP4B	None Supplied	0.25	Brown loam and sand with gravel and vegetation.
2431866	TP4B	None Supplied	0.25	Brown loam and sand with gravel and vegetation.





Analytical Report Number : 22-85391 Project / Site name: St Ives

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
NRA Leachate Prep	10:1 extract with de-ionised water shaken for 24 hours then filtered.	In-house method based on National Rivers Authority	L020-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Boron in leachate	Determination of boron in leachate. Sample acidified and followed by ICP-OES.	In-house method based on MEWAM	L039-PL	w	ISO 17025
Hexavalent chromium in leachate	Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	ISO 17025
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
TPH Texas (Soil)	TPH Texas bands C6-C10 by HS/GC-MS & C10-C40 by GC-FID	In-house method	L088/L076	D	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym		
AUTOHVIII	Acron	1 1 1 2 2
	ACIUI	

Descriptions





Analytical Report Number : 22-85391 Project / Site name: St Ives

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
HS	Headspace Analysis	-				
MS	Mass spectrometry					
FID	Flame Ionisation Detector	Flame Ionisation Detector				
GC	Gas Chromatography					
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))					
CU	Clean-up - e.g. by Florisil®, silica gel					
1D	GC - Single coil/column gas chromatography					
2D	GC-GC - Double coil/column gas chromatography					
Total	Aliphatics & Aromatics					
AL	Aliphatics					
AR	Aromatics					
#1	EH_2D_Total but with humics mathematically subtracted					
#2	EH_2D_Total but with fatty acids mathematic	ally subtracted				
_	Operator - understore to separate acronyms (	exception for +)				
+	Operator to indicate cumulative e.g. EH+HS_T	otal or EH_CU+HS_Total				



# **APPENDIX 5 – WASTE ACCEPTANCE CRITERIA (WAC) RESULTS**



Simon Wilkinson S10 Geo-Consulting Ltd 17 Birchwood Road Woolaston Lydney Gloucestershire GL15 6PE



i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: info@s10geo.co.uk

# Analytical Report Number : 22-85396

Project / Site name:	St Ives	Samples received on:	22/09/2022
Your job number:	22 137	Samples instructed on/ Analysis started on:	22/09/2022
Your order number:	22 137	Analysis completed by:	30/09/2022
Report Issue Number:	1	Report issued on:	30/09/2022
Samples Analysed:	1 10:1 WAC Sample		

Non Signed:

Dominika Warjan Junior Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





### i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical	Results						
Report No:		22-8	5396				
					Client:	S10GEOCON	
Location		St	Ives				
Lab Poference (Sample Number)					Landfill Waste Acceptance Criteria		
		2431909	/ 2431910			Limits	
Sampling Date		16/09	9/2022			Stable Non-	
Sample ID Depth (m)	Composite 0.20-3.00			Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis							
TOC (%)**	0.3				3%	5%	6%
Loss on Ignition (%) **	2.2						10%
BTEX (µg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg) EH_1D_CU_AL	< 10				500		
Total PAH (WAC-17) (mg/kg)	8.07				100		
pH (units)**	7.5					>6	
Acid Neutralisation Capacity (mmol / kg)	1.0					To be evaluated	To be evaluated
Fluate Analysis	10.1			10.1	Limit value	s for compliance le	eaching test
(BS EN 12457 - 2 preparation utilising end over end leaching	10:1			10:1	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)		
procedure)	mg/l			mg/kg			
Arsenic *	0.0013			0.0109	0.5	2	25
Barium *	0.0082			0.0693	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0009			0.0072	0.5	10	70
Copper *	0.012			0.10	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0056			0.0476	0.5	10	30
Nickel *	0.0063			0.053	0.4	10	40
Lead *	0.0041			0.035	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	/
	0.0092			0.078	4	50	200
Chioride *	1.1			9.2	800	15000	25000
Fluoride Sulphate *	0.96			0.1	1000	20000	5000
TDS*	48			410	4000	60000	10000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	6.32			53.3	500	800	1000
Leach Test Information	<u> </u>		-	-			<u> </u>
Stone Content (%)	< 0.1		-	-			<u> </u>
Sample Mass (kg)	0.40						<u> </u>
Dry Matter (%)	86	1	1	1	1	1	
Moisture (%)	14			1			
		1	1	1	1	1	
Results are expressed on a dry weight basis, after correction for m	oisture content wh	ere applicable.		•	*= UKAS accredit	ed (liquid eluate an	alysis only)
Stated limits are for guidance only and i2 cannot be held responsit	ole for any discrepa	ncies with current	egislation		** = MCERTS acc	redited	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.





### Analytical Report Number : 22-85396

# Project / Site name: St Ives

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2431909	Composite	None Supplied	0.20-3.00	Brown loam and sand with gravel and vegetation.





# Analytical Report Number : 22-85396 Project / Site name: St Ives

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	w	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance""	L046-PL	W	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	MCERTS
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	w	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by EC probe using a factor of 0.6.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031	w	ISO 17025





### Analytical Report Number : 22-85396 Project / Site name: St Ives

### Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

### **Information in Support of Analytical Results**

### List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total



# APPENDIX 6 – GAS MONITORING RESULTS
FIELD RECORD

		GAS MONITORING								
Site	[	Leach Pottery, Higher Stennace, St Fres								
OB No.		22-137								
BH/TP No.	[	NSI								
Date/Monitored by		12/10/22 512.								
Start Time	[	11.40 am.								
arometric Pressure and rend(previous 3 days)		1027	102	-4 10		lling.				
mbient Temperature			13	°c						
Veather Conditions		Ore	scort, high	lissil t						
as Concentration			CH₄	CO ₂	O ₂	CO HZ				
	585	15secs	(%)	2.4	19.7	(pm) (pm				
	570	30secs	0.0	2.4	19	0 0				
	555	45secs	0.0	2.4	18.9	0 0				
	540	1m	0.0	2.4	C.81	0 0				
	480	2m	0.0	2.4	18.9	0 0				
	420	3m	0.0	2.4	18.9	0 0				
	360	4m	0.0	2.4	6.81	0 0				
	300	5m	0.0	24	6.81	- 0 0				
	240	6m	0.0	2.4	16.0					
	120	7m 8m	0.0	2.4	19:0					
	60	Qm	0.0	2.1	19:0					
	0	10m	0.0	7.1	19.0					
Max Peak/	Steady	Values	0.0 0.0	2.4 2.4						
Flow	585	15secs	0.0	l/hr						
Readings	570	30secs	0.0	l/hr						
	555	45secs	0.0	l/hr						
	540	1m	0.0	l/hr						
	480	2m	0.0	l/hr						
	420	Зm	0.0	l/hr						
	360	4m	0.0	l/hr						
	300	5m	0.0	l/hr						
	240	6m 7~		//hr						
	180	/m 8m	6	-l/hr						
	120	Qm								
	0	10m	$\rightarrow$		1					
Max Peak/	Steady	Values	0.0 0.0							
		1								
roundwater Level		1	JRM	C2.1~						
		1								
opth and Harizon of Dag	nonce	Zone	2. Acry	Ose and os	2000 1-200					

TRUG 241E.

4

			GAS MONITORI	NG					
Site	Loan Rottery, Myther Stemart, St IVes								
JOB No.	22-137								
BH/TP No.	WS2								
Date/Monitored by	12	10/22		SND					
Start Time	12.	- m co	Pressu	re Todav					
Barometric Pressure and Trend(previous 3 days)	102	7 1024 1010			felling ! ]				
Ambient Temperature		13	°c						
Weather Conditions	over	cost, light of	lizzil						
Gas Concentration		CH ₄ (%)	CO ₂ (%)	O ₂ (%)	CO Ma				
585	15secs	0.0	27	14.5	0 0				
570	30secs	0.0	2.9	12.6	0 0				
555	45secs	0.0	2.9	12.5	0 0				
540	1m	0.0	3.0	12.5	0 0				
480	2m	0.0	2.0	12.4	0 0				
420	Зm	0.0	3.0	12.2	0 0				
360	4m	0.0	20	11.9	0 0				
300	5m	0.0	0.0	11.8					
240	6m 7m	0.0	3.0	11.0					
180	8m	0.0	2.0	11.7					
60	Gm	0.0	3.0	11.7	0 0				
00	10m	0.0	3.0	11.7	0 0				
Max Peak/Steady Values 0.0 0.0 3.0 3.0									
Flow	150000	0.0	7	_					
Readings 585	30sece	0.0							
570	455805	0.0							
540	1m	0.0	1/br						
480	2m	0.0	l/hr						
420	Зm	0.0	l/hr						
360	4m	0.0	l/hr						
300	5m	0.0	l/hr						
240	6m		l/hr						
180	7m	6	l/hr						
120	8m	$ \rightarrow $	l/hr						
60	9m	<	l/hr						
0 Max Peak/Steac	IVM Iy Values	0.0 0.0	/hr						
Groundwater Level	-	DRY C	2 3·2 m						
Depth and Horizon of Response Zone		lor in	: Los banto s	and 1-3	$\sim$				



### APPENDIX 7 – WHEAL JANE CONSULTANCY DESKTOP MINING SEARCH (ref: MS41470, dated 3rd February 2022)



Wheal Jane Consultancy Old Mine Offices Wheal Jane Baldhu, Truro Cornwall, TR3 6EE



## Archival (Desktop) Mining Search

# Mining Risk: Moderate Action: Structural Inspection

### Address:

Leach Pottery Higher Stennack St Ives Cornwall TR26 2HE

**Client:** 

Bernard Leach (St Ives) Trust Ltd Leach Pottery Higher Stennack St Ives Cornwall TR26 2HE

Your Ref.: Our Ref.: Date:

MS41470 3 February 2022

> 01872 560 200 consultancy@wheal-jane.co.uk





Dear Sirs,

### Re: Leach Pottery, Higher Stennack, St Ives, Cornwall, TR26 2HE

We thank you for your recent request.

As instructed, we have carried out a mining search in respect of the above property, as delineated on the plan supplied for the purpose of requesting this search (a copy of which is included with this report).

The purpose of this mine search is to examine and interpret the plans and records in our possession relating to metalliferous mining activity and based upon this information, give a professional opinion in respect of potential risk to the property from such historical mining activity and, if required, make recommendations as may be deemed appropriate.

Where other workings relating to clay, stone or other minerals are noted to be in close proximity to the property mention will be made of them.

This report is of a format suitable for conveyancing purposes.

### **Mining Activity**

The property, which is shown edged in green on the attached plan, is located in the St Ives mining district. It lies within the lease or sett boundaries of the old St Ives Consols Mine.

A lode (mineralised structure) known as Caunter Lode underlies the property, old geological mapping indicates it lying as shown by the zone coloured orange.

This is suggested to be a position at considerable depth from surface and is noted to be dipping in a southerly direction.

The plans of St lves Consols Mine show considerable deep level workings on the course of this lode underlying the property.

The shallowest of these workings is identified as the 67 fathom level, which would lie at a depth in excess of 100 metres from surface.

These deep workings have been omitted from the plan for clarity.

An old mine shaft known as Millets Shaft lies some 25 metres to the east-south-east of the eastern end of the property.

Other shafts lie over 35 metres to the west-north-west of the property.

An old mine shaft known as Cornish Shaft of St Ives Consols Mine lies over 50 metres to the north-west of the property.

This shaft suffered a collapse on the 28th March 2018.



We have found no evidence of clay workings or other mineral workings in the immediate vicinity of the property.

Based upon the historic mapping sources we have reviewed we have found no evidence of any water supply wells within the boundaries of the property.

#### Conclusions

We know of no plans to exploit metallic minerals in the locality, nor do we consider this a likely event.

Although, based upon the information that is held in our possession, at the time of writing this report, we have found no documentary evidence to indicate the presence of shallow old mine workings directly underlying the property, given the location of the property within an area of extensive and ancient mining activity, we would consider it prudent that the property should be inspected.

#### Recommendations

We would recommend that a qualified, chartered structural / civil engineer or surveyor, with experience of looking for mining and quarrying related issues, undertakes a thorough visual inspection of the property to check for any signs of abnormal settlement or distress.

If no evidence of any abnormal structural movement is observed in the course of such an inspection, we would consider that the property is at low risk from being affected by past mining activity.







#### Scope of Search & Limitations

This search has been carried out with reference to the extensive collection of plans, records and archives that are held in our possession at the time of writing this report and from this material we have endeavoured to give as accurate a report as possible in respect of the property as delineated in the initial request.

However, taking into account that such records may not be wholly complete or accurate, that records may exist of which we do not hold copies, or records exist that are held in private sources which are not available to us and that in Cornwall, Devon and Somerset many ancient shallow workings and shafts exist of which there are no records, we cannot accept liability for any inaccuracies there may be.

This report is concerned solely with the property searched and should not be used in connection with adjacent properties as only relevant mining features have been mentioned and any known features that would not have a direct influence upon the target property may have been omitted for clarity.

The report is based upon the property boundaries as shown on the supplied request plan.

We cannot accept liability for any inaccuracies if the property boundaries, as supplied to us by the client or the client's agent, are subsequently shown to be incorrect, incomplete or if no such request plan has been supplied when the search has been requested.

This report is confidential to the client and the client's legal advisor and the client's mortgage lender and as such may be used by them for conveyancing or related purposes.

We have no liability toward any person or organisation not party to commissioning this report.

This report or any part of it, is not permitted to be reproduced, copied, altered or in any other way distributed by any other person or organisation.

Unless otherwise expressly stated, nothing in this report shall create or confer any rights or other benefits pursuant to the Contracts (Rights of Third Parties) Act 1999 in favour of any person or organisation other than the person/organisation commissioning this report.

This report is not a contaminated land, environmental, geotechnical or archaeological survey and should not be interpreted as such.

No site visit has been made.

We trust that this report is to your satisfaction and will be happy to answer any queries with respect to it.

Yours faithfully,

Time Conseller

Wheal Jane Consultancy dalef@wheal-jane.co.uk 01872 560200



### Mining Glossary

Adit	Horizontal mine drainage tunnel driven from low ground into mine workings. The adit tunnel is the shallowest level shown on mine plans and usually represents the earliest period of workings recorded. Adits have ventilation shafts at regular intervals, which are mostly unrecorded.
Alluvium	Clay, sand and debris deposited by a river. Often streamed for tin.
Burrow	A mine waste tip.
Caunter lode	A lode which runs in a different direction to the general trend of lodes in the district.
Coffin/Koffen	Trench-like openwork at surface.
Costean Pit	A small surface pit excavated to locate and/or sample a lode.
Crosscourse	Geological features which run at right-angles to the principal lodes of a district, and are
	vertical or sub-vertical faults. Mostly barren of payable minerals, but can carry values of iron
	ore, cobalt and other metallic minerals. Also known as 'guides' or 'trawns' in the St Just and
	St lves mining districts respectively.
Crosscut	Tunnel driven underground, usually at right-angles to the lodes.
Dip of Lode	Angle of inclination of a lode from the horizontal.
Drive	Tunnel driven along the course of a lode.
Elvan	Igneous rock (quartz-porphyry) occurring as a vein or dyke. Can be extremely hard.
<b>•</b> •	Exploited by quarrying.
Granite	Igneous rock. Crystalline mixture of quartz, feldspar and mica.
Greenstone	Igneous rock also called 'blue elvan'. Generally extremely hard.
Gunnis	Open stope at surface or underground.
Kaolinisation	Alterations or weathering of granite to clay and sand from solid rock.
Killas	Generic term given to sedimentary rock in Cornwall.
Leat	A man-made watercourse.
Level	consist of lode drives and crosscut tunnels: i.e. 12 fathom level; the system of tunnels driven at 12 fathoms below adit horizon
Lode	A mineralised structure or vein. Most lodes run from surface vertically or sub-vertically, and
	can vary from a few inches to several metres in width.
Mundic	Iron pyrite, arsenic and sulphur - arsenopyrite.
Openwork	A surface working, which has usually left a pit or backfilled excavation.
Outcrop	The part of the lode which breaks surface. Worked-out voids and backfilled areas are
-	outcrop features.
Rab	Weathered zone of mixed rock and soil (natural profile)
Sett	An area of land leased for mining.
Shaft	Holes in the ground, which can vary from 0.5m x 1m up to shafts 7m across. Engine shafts
	tends to be large (typically 3m x 2m) and adit shafts are smaller (typically 1.2m x 1.8m).
	Depths vary down to 700m.
Stockwork	Mass of narrow veins or lodes running parallel and sub-parallel.
Stope	Ground where lode has been removed leaving void. Sometimes open to surface.
Tailings	Residual sands and slimes from ore dressing. Usually heavily contaminated.





#### **Mining References (generic listing)**

H G Dines - The Metalliferous Mining Region of South West England (2 Vols) A K Hamilton Jenkin - Mines & Miners of Cornwall (16 Vols) A K Hamilton Jenkin - Mines of Devon (2 Vols) A K Hamilton Jenkin - Wendron Thomas Spargo - Tin Mines of Cornwall (6 Vols) J H Collins - Observations of West of England Mining Region Sellwood, Durrance & Bristow - Geology of Cornwall Durrance & Laming - Geology of Devon Burt, Waite & Burnley - Cornish Mines MRO Plans (CRO) MRO Copies (SC Archive) MRO Microfiche (SC) South Crofty Archive **Tehidy Minerals Archive** JMS/JAB/JHB Archive Wheal Jane Collection Wheal Pendarves Collection **Geevor Collection Thyssen Review & Plans** A K H Jenkin, Annotated 6" Plans Geological 6" Plans **Richard Thomas Plans Robert & Brenton Symons Plans** Nicholas Whitley Plans **K** Bennet Annotated Plans **R** Lyon Annotated Plans Ordnance Survey 1880, 1906, etc Maps H G Dines Composites



### Search Request Plan

Copy of the request plan provided to Wheal Jane Consultancy to identify the property for search purposes:



Accuracy, quick turnaround times, competitive prices, fully qualified and experienced staff, full professional indemnity insurance cover.

Cornwall's first ISO certified mine search and site investigation specialists





Mine Search – What Next?